[2018年最新整理]1变量.ppt
文本预览下载声明
3、圆的周长C与半径r的关系式 6、计划购买50元的乒乓球,所能购买的总数 n(个)与单价a(元)的关系式 .其 中的变量是 ,常量 . 7、某位教师为学生购买数学辅导书,书的单 价是4元,则总金额y(元)与学生数n(个)的关 系式 .其中的变量是 ,常量是 . * 大千世界万物皆变 行星在宇宙中的位置随时间而变化; 人体细胞的个数随年龄而变化; 气温随海拔而变化; 汽车行驶里程随行驶时间而变化; …… 一个量随另一个量的变化而变化 一辆汽车以60千米/小时的速度匀速行驶,行驶里程为S千米,行使时间为t小时. 3.试用含t的式子表示S . S 5 4 3 2 1 t 2.在以上这个过程中, 1.请根据题意填写下表: 60 120 180 240 300 里程S千米与时间t小时 速度60千米/小时 S=60t 变化的量是 . 没变化的量是 . 路程 = 速度×时间 每张电影票售价为10元,如果早场售出票150张,午场售出票205张,晚场售出310张. 三场电影的票房收入各多少元? 设一场电影售票x张,票房收入y元。怎样用含x的式子表示 y ? (2) 关系式为:y=10x (1) 早场电影票收入:150×10=1500元 日场电影票收入:205×10=2050元 晚场电影票收入:310×10=3100元 票房收入 = 售价×售票张数 在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律。 如果弹簧原长10cm,每1kg的重物使弹簧伸长0.5cm,怎样用含有重物质量m的的式子表示受力后弹簧的长度l? 挂1kg重物时弹簧的长度:1×0.5+10=10.5(cm) 关系式为: l =0.5m+10 探究: 结论: 挂2kg重物时弹簧的长度:2×0.5+10=11(cm) 挂3kg重物时弹簧的长度:3×0.5+10=11.5(cm) 要画一个面积为10 cm2的圆,圆的半径应取多少?圆的面积为20 cm2 呢?怎样用含有圆面积S的式子表示圆半径r? 探究: 圆面积公式 面积为10 cm的圆半径 面积为20 cm的圆半径 关系式为: ≈ 1.78(cm) ≈ 2.52(cm) r s 1 2.5 3 4 长 x 厘米 宽 (5-x) 厘米 1 2 2.5 面积 s 厘米2 4 6 6.25 解: 用10cm长的绳子围成矩形,试改变矩形的长、宽,观察矩形的面积怎样变化,试举出三组长、宽的值。 计算相应矩形的面积的值,然后探索它们的变化规律:设矩形的长为xcm,面积为S cm2,怎样用含x的式子表示S? S=x(5-x) (1) S =60t (5) S= x(5-x) (3) l =10+0.5x (2) y = 10x 变量:在一个变化的过程中,数值发生变化的量为变量. 常量:在一个变化的过程中,数值始终不变的量为常量. 一、指出下列关系式中的变量和常量. 变量: x, y 常量: 7,-6 变量: x, y 常量: 6 变量: x, y 常量: 4,5,-7 变量: S, r 常量: 如图所示,梯形的上底长是x,下底长是15,高是8。 (1)梯形面积y与上底长x之间的关系式是什么?并指出其中的变量与常量; (2)当x=3时,y等于多少? x 15 8 y 答:y = 4(x+15)。其中...... 解:把x=3代入关系式,得 y=4×(3+15) =72 答:当x=3时,y等于72 例: 1、一辆汽车以40千米/小时的速度行驶,写出行驶路程s(千米)与行驶时间t(时)的关系式。 2、一辆汽车要行驶50千米的路程,写出行驶速度v(千米/小时)与行驶时间t(小时)之间的关系式. S = 40t 时间 t 小时 速度 40千米/时 路程 S 千米 V= t 50 变量 变量 常量 时间 t 小时 路程50千米 速度V千米/时 变量 变量 常量 ________________ 常 量: 变 量: c, r 4、n边形的内角和S与边数n的关系式 ____________________ s=(n-2) ×1800 常 量: 变 量: n, s -2, 180 2, 5、小明到商店买练习簿,每本单价2元,购买的总数
显示全部