文档详情

辽宁省锦州市实验学校八年级数学上册《第1章 勾股定理》教学设计 (新版)北师大版.doc

发布:2017-08-31约4.05千字共9页下载文档
文本预览下载声明
第1章 勾股定理 一、学生起点分析勾股定理是反映自然界基本规律的一条重要结论,它揭示了直角三角形三边之间的数量关系,将形与数密切联系起来,理论上占有重要的地位,它有着悠久的历史,在数学发展中起过重要的作用,在现实世界中也有着广泛的应用,勾股定理的应用蕴含着丰富的文化价值..本课时教学是复习课,强调让学生经历数学知识的形成与应用过程,鼓励学生自主探索与合作交流,以学生自主探索为主,并强调同桌之间的合作与交流,强化应用意识,培养学生多方面的能力.让学生通过动手、动脑、动口自主探索,感受数学的美,以提高学习兴趣.为此,本节课的教学目标是:①让学生回顾本章的知识,同时重温这些知识尤其是勾股定理的获得和验证的过程,体会勾股定理及其逆定理的广泛应用. ②在回顾与思考的过程中,提高解决问题,反思问题的能力. ③在反思和交流的过程中,体验学习带来的无尽的乐趣.通过对勾股定理历史的再认识,培养爱国主义精神,体验科学给人来带来的力量. 三、教学过程设计 第一环节 勾股定理,我们把它称为世界第一定理.它的重要性,通过这一章的学习已深有体验,首先,勾股定理是数形结合的最典型的代表;其次,了解勾股定理历史的同学知道,正是由于勾股定理得发现,导致无理数的发现,引发了数学的第一次危机,这一点,我们将在《实数》一章里讲到,第三,勾股定理中的公式是第一个不定方程,有许许多多的数满足这个方程,也是有完整的解答的最早的不定方程,最为著名的就是费马大定理,直到1995年,数学家怀尔斯才将它证明. 勾股定理是我们数学史的奇迹,我们已经比较完整地研究了这个先人给我们留下来的宝贵的财富,这节课,我们将通过回顾与思考中的几个问题更进一步了解勾股定理的历史,勾股定理的应用. 目的: 通过对勾股定理历史及地位的解读,让学生了解知识脉络及前后联系,激发学习探究热情. 效果: 从历史的深度提出问题,学生探究热情高涨,为下一环节奠定了良好基础. 第二环节:知识结构梳理 本章知识要点及结构: (第1—6题由学生独立思考完成,小组代表展示) 1.勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用和分别表示直角三角形的直角边和斜边,那么__________. 2.勾股定理各种表达式: 在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边也分别为,则=_________,=_________,=_________. 3.勾股定理的逆定理: 在△ABC中,若三边满足___________,则△ABC为___________. 4.勾股数: 满足___________的三个___________,称为勾股数. 5.几何体上的最短路程是将立体图形的________展开,转化为_________上的路程问题,再利用___________两点之间,___________解决最短线路问题. 6.直角三角形的边、角之间分别存在着什么关系? (教师引导,小组讨论、总结) 从边的关系来说,当然就是勾股定理;从角度的关系来说,由于直角三角形中有一个特殊的角即直角,所以直角三角形的两个锐角互余. 直角三角形作为一个特殊的三角形.如果又有一个锐角是,那么的角所对的直角边时斜边的一半. 7.举例说明,如何判断一个三角形是直角三角形. 判断一个三角形是直角三角形可以从角、边两个方面去判断. (1)从定义即从角出发去判断一个三角形是直角三角形. 例如:①在△ABC中,,根据三角形的内角和定理,可得,根据定义可判断△ABC是直角三角形. ②在△ABC中,,由三角形的内角和定理可知,,,,△ABC是直角三角形. (2)从边出发来判断一个三角形是直角三角形.其实从边来判断直角三角形它的理论依据就是判定直角三角形的条件(即勾股定理的逆定理). 例如:①△ABC的三条边分别为,而,根据勾股定理的逆定理可知△ABC是直角三角形,但这里要注意的是b所对的角. ②在△ABC三条边的比为,△ABC是直角三角形. 目的: 复习与直角三有形有关的知识,加强知识的前后联系,把勾股定理及判定纳入直角三角形的知识体系中,把以前的零散的知识形成知识体系.通过学生相互交流,整理知识框图复习本章知识点,自觉内化到自身的知识体系中. 效果: 学生有独立思考的空间,与有合作交流的舞台,动静结合,相得益彰. 第三环节:合作探究 内容: 探究一:利用勾股定理求边长 已知直角三角形的两边长分别为3、4,求第三边长的平方. 解:(1)当两直角边为3和4时,第三边长的平方为25; (2)当斜边为4,一直角边为3时,第三边长的平方为7. 注意事项: 因学生习惯了“勾三股四弦五”的说法,即意味着两直角边为3和4时,斜边长为5.但这一理解的前提是3、4为直角边.而本题中并未加以任何说明,因而所求的第三边可能为斜边,但也可能为直角边. 探究二:利用勾股定
显示全部
相似文档