[2018年最新整理]2008年全国中考数学压轴题精选精析.doc
文本预览下载声明
2008年全国中考数学压轴题精选精析(二)
14.(08江苏常州)(本题答案暂缺)28.如图,抛物线 与x轴分别相交于点B、O,它的顶点为A,连接AB,把AB所的直线沿y轴向上平移,使它经过原点O,得到直线l,设P是直线l上一动点.
(1) 求点A的坐标;
(2) 以点A、B、O、P为顶点的四边形中,有菱形、等腰梯形、直角梯形,请分别直接写出这些特殊四边形的顶点P的坐标;
(3) 设以点A、B、O、P为顶点的四边形的面积为S,点P的横坐标为x,当 时,求x的取值范围.
13.(08江苏淮安)(本题答案暂缺)28.(本小题14分)
如图所示,在平面直角坐标系中.二次函数y=a(x-2)2-1图象的顶点为P,与x轴交点为 A、B,与y轴交点为C.连结BP并延长交y轴于点D.
(1)写出点P的坐标;
(2)连结AP,如果APB为等腰直角三角形,求a的值及点C、D的坐标;
(3)在(2)的条件下,连结BC、AC、AD,点E(0,b)在线段CD(端点C、D除外)上,将BCD绕点E逆时针方向旋转90°,得到一个新三角形.设该三角形与ACD重叠部分的面积为S,根据不同情况,分别用含b的代数式表示S.选择其中一种情况给出解答过程,其它情况直接写出结果;判断当b为何值时,重叠部分的面积最大?写出最大值.
14.(08江苏连云港)24.(本小题满分14分)
如图,现有两块全等的直角三角形纸板,,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的 , 处,直角边 在 轴上.一直尺从上方紧靠两纸板放置,让纸板沿直尺边缘平行移动.当纸板移动至 处时,设 与 分别交于点 ,与 轴分别交于点 .
(1)求直线 所对应的函数关系式;
(2)当点 是线段 (端点除外)上的动点时,试探究:
点 到 轴的距离 与线段 的长是否总相等?请说明理由;
两块纸板重叠部分(图中的阴影部分)的面积 是否存在最大值?若存在,求出这个最大值及 取最大值时点 的坐标;若不存在,请说明理由.
(08江苏连云港24题解析)24.解:(1)由直角三角形纸板的两直角边的长为1和2,
知 两点的坐标分别为 .
设直线 所对应的函数关系式为 . 2分
有 解得
所以,直线 所对应的函数关系式为 . 4分
(2)点 到 轴距离 与线段 的长总相等.
因为点 的坐标为 ,
所以,直线 所对应的函数关系式为 .
又因为点 在直线 上,
所以可设点 的坐标为 .
过点 作 轴的垂线,设垂足为点 ,则有 .
因为点 在直线 上,所以有 . 6分
因为纸板为平行移动,故有 ,即 .
又 ,所以 .
法一:故 ,
从而有 .
得 , .
所以 .
又有 . 8分
所以 ,得 ,而 ,
从而总有 . 10分
法二:故 ,可得 .
故 .
所以 .
故 点坐标为 .
设直线 所对应的函数关系式为 ,
则有 解得
所以,直线 所对的函数关系式为 . 8分
将点 的坐标代入,可得 .解得 .
而 ,从而总有 . 10分
由知,点 的坐标为 ,点 的坐标为 .
. 12分
当 时, 有最大值,最大值为 .
取最大值时点 的坐标为 . 14分
15.(08江苏连云港)25.(本小题满分12分)
我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段 的最小覆盖圆就是以线段 为直径的圆.
(1)请分别作出图1中两个三角形的最小覆盖圆(要求用尺规作图,保留作图痕迹,不写作法);
(2)探究三角形的最小覆盖圆有何规律?请写出你所得到的结论(不要求证明);
(3)某地有四个村庄 (其位置如图2所示),现拟建一个电视信号中转站,为了使这四个村庄的居民都能接收到电视信号,且使中转站所需发射功率最小(距离越小,所需功率越小),此中转站应建在何处?请说明理由.
(08江苏连云港25题解析)25.解:(1)如图所示: 4分
(注:正确画出1个图得2分,无作图痕迹或痕迹不正确不得分)
(2)若三角形为锐角三角形,则其最小覆盖圆为其外接圆; 6分
若三角形为直角或钝角三角形,则其最小覆盖圆是以三角形最长边(直角或钝角所对的边)为直径的圆. 8分
(3)此中转站应建在 的外接圆圆心处(线段 的垂直平分线与线段 的垂直平分线的交点处). 10分
理由如下:
由 ,
, ,
故 是锐角三角形,
所以其最小覆盖圆为 的外接圆,
设此外接圆为 ,直线 与 交于点 ,
则 .
故点 在 内,从而 也是四边形 的最小覆盖圆.
所以中转站建在 的外接圆圆心处,能够符合题中要求.
12分
16(08江苏南京)28.(10分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为 ,两车之间的距离为 ,图中的折线表示 与 之间的函数关系.
根据图象
显示全部