2012年中考数学压轴题精选精析dy.doc
文本预览下载声明
.
PAGE
. . .
2012年各地中考数学压轴题精选精析
(1.2012黄石) 25.(本小题满分10分)已知抛物线的函数解析式为,若抛物线经过点,方程的两根为,,且。
(1)求抛物线的顶点坐标.
(2)已知实数,请证明:≥,并说明为何值时才会有.
(3)若抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线,设,是上的两个不同点,且满足:,,.请你用含有的表达式表示出△的面积,并求出的最小值及取最小值时一次函数的函数解析式。
(参考公式:在平面直角坐标系中,若,,则,两点间的距离为)
【解答】解:(1)∵抛物线过(0,-3)点,∴-3a
∴a=1 ……………………………………1分
∴y=x2+bx-3
∵x2+bx-3=0的两根为x1,x2且=4
∴=4且b<0
∴b=-2 ……………………1分
∴y=x2-2x-3=(x-1)2-4
∴抛物线C1的顶点坐标为(1,-4) ………………………1分
(2)∵x>0,∴
∴显然当x=1时,才有 ………………………2分
(3)方法一:由平移知识易得C2的解析式为:y=x2 ………………………1分
∴A(m,m2),B(n,n2)
∵ΔAOB为RtΔ
∴OA2+OB2=AB2
∴m2+m4+n2+n4=(m-n)2+(m2-n2)2
化简得:m n=-1 ……………………1分
∵SΔAOB==
∵m n=-1
∴SΔAOB=
=
∴SΔAOB的最小值为1,此时m=1,A(1,1) ……………………2分
∴直线OA的一次函数解析式为y=x ……………………1分
方法二:由题意可求抛物线的解析式为: (1分)
B(n,n2)
B(n,n2)
A(m,m2)
O
C
D
y
x
过点、作轴的垂线,垂足分别为、,则
由 得
即
∴ (1分)
∴
∴
由(2)知:
∴
当且仅当,取得最小值1
此时的坐标为(1,1) (2分)
∴一次函数的解析式为 (1分)
(2.2012滨州)24.如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣2,﹣4),O(0,0),B(2,0)三点.
(1)求抛物线y=ax2+bx+c的解析式;
(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.
考点:二次函数综合题。
解答:解:(1)把A(﹣2,﹣4),O(0,0),B(2,0)三点的坐标代入y=ax2+bx+c中,得
解这个方程组,得a=﹣,b=1,c=0
所以解析式为y=﹣x2+x.
(2)由y=﹣x2+x=﹣(x﹣1)2+,可得
抛物线的对称轴为x=1,并且对称轴垂直平分线段OB
∴OM=BM
∴OM+AM=BM+AM
连接AB交直线x=1于M点,则此时OM+AM最小
过点A作AN⊥x轴于点N,
在Rt△ABN中,AB===4,
因此OM+AM最小值为.
(3.2012滨州)25.如图1,l1,l2,l3,l4是一组平行线,相邻2条平行线间的距离都是1个单位长度,正方形ABCD的4个顶点A,B,C,D都在这些平行线上.过点A作AF⊥l3于点F,交l2于点H,过点C作CE⊥l2于点E,交l3于点G.
(1)求证:△ADF≌△CBE;
(2)求正方形ABCD的面积;
(3)如图2,如果四条平行线不等距,相邻的两条平行线间的距离依次为h1,h2,h3,试用h1,h2,h3表示正方形ABCD的面积S.
考点:全等三角形的判定与性质;平行线之间的距离;正方形的性质。
解答:证明:(1)在Rt△AFD和Rt△CEB中,
∵AD=BC,AF=CE,
∴Rt△AFD≌Rt△CEB;
(2)∵∠ABH+∠CBE=90°,∠ABH+∠BAH=90°,
∴∠CBE=∠BAH
又∵AB=BC,∠AHB=∠CEB=90°
∴△ABH≌△BCE,
同理可得,△ABH≌△BCE≌△CDG≌△DAF,
∴S正方形ABCD=4S△ABH+S正方形HEGF
=4××2×1+1×1
=5;
(3)由(1)知,△AFD≌△CEB,故h1=h3,
由(2)知,△ABH≌△BCE≌△CDG≌△DAF,
∴S正方形ABCD=4S△ABH+S正方形HEGF
=4×(h1+h2)?h1+h22=2h12+2h1h2+h22.
(4.2012云南)22.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点N,连接BM,DN.
(1)求证:
显示全部