江苏省东台市唐洋镇中学数学下册《黄金分割》学案.doc
文本预览下载声明
《10.2黄金分割》学案
学习目标
A、经历探索黄金分割、黄金矩形、黄金三角形的过程,了解黄金分割在生活
的各个领域有价值的运用;
B、会找一条线段的黄金分割点;
B、在应用中进一步理解线段的比、成比例线段,并在实际操作、思考、交
流等过程中进一步感悟数学与生活的密切联系;
C、通过建筑、艺术等生活实例使学生体会黄金分割的文化价值,提高学生的审美意识。
学习重点:了解黄金分割、黄金矩形、黄金三角形的意义;
学习难点:怎样做一条线段的黄金分割点;
一、复习:
前面一节课我们探讨了成比例线段,以及比例的性质,什么叫成比例线段?比例有哪些性质?什么叫比例中项?
二、情境创设:
1、P85欣赏芭蕾舞演员身体各部分之间适当的比例给人以匀称、协调的美感,请量出图中线段AB、AC的长度,并求出线段AB与AC的比值;
2、上海东方明珠电视设计巧妙,整个塔体的挺拔秀丽,请量出图中线段AB、AC的长度,并求出线段AB与AC的比值;
3、观察P84“你最喜欢的矩形”的调查结果,看看多数同学选择是哪一个矩形,在此矩形中,宽与长的比值约是多少?
三、探索活动:
活动一、计算(或)的值,引入黄金分割的概念.
把矩形ABCD的长AB与宽BC画在同一条直线上,此时点B把线段AC分成两部分,如果,那么线段AC被点B黄金分割。(有一种通俗的说法是:较小的线段与较大的线段的比等于较大的线段与整个线段之比)
BC与AC(或AC与AB)的比值约为0.168,这个比值称为黄金比.
注意:(1)一条线段的黄金分割点有两个,它们关于中点中心对称;
(2)若矩形的两条邻边长度的比值约为0.618,这种矩形称为黄金矩形.
(3)若在黄金矩形中截取一个正方形,那么剩余的矩形是黄金矩形吗?
活动二、认识黄金分割在几何中的一些应用.(如黄金三角形)
1、作顶角为36°的等腰△ABC;
2、分别量出底边BC与腰AB的长度;
3、作∠B的平分线,交AC于点D,量出△BCD的底边CD的长度;
最后,分别求出△ABC与△BCD的底边与腰的长度的比值(精确到0.001)
问:比值是多少? 学生:大约是0.618
所以我们把顶角为36°的三角形称为黄金三角形,它具有如下的性质:
(1);
(2)设BD是△ABC的底角的平分线,则△BCD也是黄金三角形,且点D是线段AC的黄金分割点;
(3)如再作∠C的平分线,交BD于点E,则△CDE也是黄金三角形,如此继续下去,可得到一串黄金三角形;
活动三、如图,五边形ABCDE的5条边相等,5个内角也相等,
(1)找出图中的黄金三角形;
(2)图中的点F、G、H、M、N分别是那些线段的黄金分割点?你能说明理由吗?
解:(1)△ACD、△BDE、△CAE、△DAB、△EBC、△AGD、△ABN、△BCF、
△BAH、△CMB、△CDG、△DNC、△DEH、△EDF、△EMA;
(2)点F是线段CG、CE、DN、BD的黄金分割点,……………
三、例题讲解:
例1、若线段AB=4cm,点C是线段AB的一个黄金分割点,则AC的长为多少?
变题:电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体,若舞台AB长为20米,试计算主持人应走到离A点至少多少米处是比较得体的位置?(结果精确到0.1米)
例2、据有关实验测定,当气温处于人体正常体温(37oC)的黄金比值时,人体感到最舒适。这个气温约为_______ oC (精确到1 oC)。
例3、如图,点C是AB的黄金分割点,AB=4,则AC2=________;(结果保留根号)
例4、我们知道古希腊时期的巴台农神庙(Parthenom Temple)的正面是一个黄金矩形,若已知黄金矩形的长等于6,则这个黄金矩形的宽等于_________;
(结果保留根号)
例5、如图的五角星中,AD=BC,且C、D两点都是AB的黄金分割点,AB=1,求CD的长;
例6、科学研究表明,当人的下肢与身高比为0.618时,看起来最美,某成年女士身高为153cm,下肢长为92cm,该女士穿的高跟鞋鞋跟的最佳高度约为 cm(精确到0.1cm);
四、黄金分割的应用:
(1)据有关测定, 当气温处于人体正常体温的黄金比值时 , 人体感到最舒适。因此夏天使用空调时室内温度调到什么温度最适合? (人的正常体温36.2℃~ 37.2℃)
“人体舒适指数”----36.5℃×0.618≈23℃,“人体舒适指数”为22℃∽24℃;
(2)二胡的“千斤”放在琴弦的金分割点处,音色最佳;
(3)维纳斯雕像、雅典娜女神象、海姑娘---阿曼达雕塑等肚脐之下
显示全部