《仪器舱振动信号时频分析和聚类》-毕业论文(设计).doc
文本预览下载声明
摘 要
1998年美国工程院院士N.E. Huang及其合作者在经典希尔伯特变化的基础上首次提出了一种适合于处理非平稳信号的新的时频分析方法——Hilbert-Huang变换(简称HHT),该方法的创新是经验模式分解(Empirical Mode Decomposition,EMD)的引入。通过这种方法任何复杂信号都可以分解为有限的且具有一定物理意义的几个模态函数(IMF)分量,再对各分量进行Hilbert变换以得到各自的瞬时频率和振幅,最终把信号表示为时频平面上的能量分布,称为Hilbert谱。它可以对信号做出精确的局部时频分辨,可以更准确有效地把握原数据的特征信息,且自适应性、完备性和正交性的特点。短短几年来,它己被成功应用于地震勘探、故障诊断、生物医学、海洋等诸多领域。
本文在N.E.Huang等人已有研究工作的上,将HHT应用于仪器舱振动信号的处理分析,验证了HHT在实际信号中的应用,对HHT在实际中的应用进行了探索。通过对原始信号的HHT变换,提出了一种基于HHT的振动信号聚类特征信息提取方法,即根据所得到EMD分解及HHT变换后所得的参数对仪器舱振动信号进行相似性的聚类分析。并通过实验对比验证了这一方法的有效性,这对于HHT在实际领域的应用扩展有重大意义。
关 键 词:希尔伯特-黄变换;EMD分解;希尔伯特谱;聚类分析
ABSTRACT
In 1998, N.E.Huanga mernber of the National Academy of Engineering in American,and his col1aborators first developed a novelty tirne—frequency analysis method,Hilbert—Huang transform(HHT),which is suitable for nonlinear and nonstationary signals,on the foundation of classic Hilbert transfornl.The main imiovation einbodied in this method is the introduction of the empirical mode decomposition(EMD).By this way any complicated data set can be decomposed into a finite and samll number of intrinsic mode functions(IMF) which is provided with distinct physical senses.Then with Hilbert transform,the intrinsic mode fucntions yield instantaneous frequencies and instantaneous amplitudes .And the final presentation of the results is an energy distribution on the time-frequency domain,named as the Hilbert spectrum.It can give precise description of the embedded structures and the local characteristic of the signal in the joint time—fequency domain,and possess higher precise time—frequency resolution, more accurately and effectively grasp the characteristics of the original data, and by this way the signal process the characteristic such as adaptiveness completeness,orthogonality.In recent years,it has been applied in a variety of problems,such as earthquake research,machinery fault diagnosis,biomedicine engineering ocean science.
This article bases on the former work done by N.E.Huang ,apply the HHT to
显示全部