文档详情

高一数学必须修读1复合函数定义域的求法.ppt

发布:2017-04-06约1.55千字共10页下载文档
文本预览下载声明
1.2.4 复合函数定义域的求法 Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 复合函数的定义: 如果y是u的函数,记为y=f(u),u 又是x的函数,记为u=g(x),且g(x)的值域与f(u)的定义域的交集不空,则确定了一个y关于x的函y=f[g(x)],这时y叫x的复合函数,其中u叫中间变量,y=f(u)叫外层函数,u=g(x)叫内层函数. 即:x → u → y Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 复合函数的定义域的求法: 若复合函数y=f[g(x)],外函数y=f(u),内函数u=g(x): (1)f(x)的定义域就是g(x)的值域.若f(x)的定义域为D,则y=f[g(x)]的定义域是使 有意义的x的集合. (2)y=f[g(x)]的定义域为D,则g(x)在D上的取值范围(g(x)的值域)即为f(x)的定义域. Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 复合函数求定义域的几种题型: 解: 由题意知: Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 解: 由题意知: Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 练习 Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 题型四: 已知函数的定义域,求含参数的取值范围 (1)当K=0时, 3≠0成立 解: Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 解:∵定义域是R, Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd.
显示全部
相似文档