Time and SpaceEfficient Evaluation of Some Hypergeometric Constants.pdf
文本预览下载声明
INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE
7
0 Time- and Space-Efficient Evaluation of Some
0
2
n Hypergeometric Constants
a
J
5
2
Howard Cheng — Guillaume Hanrot — Emmanuel Thomé — Eugene Zima — Paul
]
C
S Zimmermann
.
s
c
[
1
v
1
5
1
1
0 N° ????
7
0
/ Janvier 2007
s
c
:
v Thème SYM
i
X
r
a
ap por t
d e r e c h e r c h e
Time- and Space-Efficient Evaluation of Some
Hypergeometric Constants
Howard Cheng∗ , Guillaume Hanrot , Emmanuel Thom´e , Eugene Zima† ,
Paul Zimmermann
Th`eme SYM — Syst`emes symboliques
Projet Cacao
Rapport de recherche n° ???? — Janvier 2007 — 17 pages
Abstract: The currently best known algorithms for the numerical evaluation of hyper-
geometric constants such as ζ (3) to d decimal digits have time complexity O (M (d) log2 d)
and space complexity of O (d log d) or O (d). Following work from Cheng, Gergel, Kim and
Zima, we present a new algorithm with the same asymptotic complexity, but more efficient
in practice. Our implementation of this algorithm improves slightly over existing programs
for the computation of π , and we announce a new record of 2 billion digits for ζ (3).
Key-words: Hypergeometric constants, binary splitting, sieve
∗ Department of Mathematics and Computer Science, University of Lethbridge,
howard.cheng@uleth.ca
† Wilfrid Laurier University, ezima@wlu.
显示全部