圆锥曲线解题技巧及例题汇编(学生用).doc
文本预览下载声明
圆锥曲线解题技巧及例题汇编
1、定义法
(1)椭圆有两种定义。第一定义中,r1+r2=2a。第二定义中,r1=ed1 r2=ed2。
(2)双曲线有两种定义。第一定义中,,当r1r2时,注意r2的最小值为c-a:第二定义中,r1=ed1,r2=ed2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法
因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x1,y1),B(x2,y2),弦AB中点为M(x0,y0),将点A、B坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:
(1)与直线相交于A、B,设弦AB中点为M(x0,y0),则有。
(2)与直线l相交于A、B,设弦AB中点为M(x0,y0)则有
(3)y2=2px(p0)与直线l相交于A、B设弦AB中点为M(x0,y0),则有2y0k=2p,即y0k=p.
【典型例题】
例1、(1)抛物线C:y2=4x上一点P到点A(3,4)与到准线的距离和最小,则点 P的坐标为______________
(2)抛物线C: y2=4x上一点Q到点B(4,1)与到焦点F的距离和最小,则点Q的坐标为 。
例2、F是椭圆的右焦点,A(1,1)为椭圆内一定点,P为椭圆上一动点。
(1)的最小值为
(2)的最小值为
例3、动圆M与圆C1:(x+1)2+y2=36内切,与圆C2:(x-1)2+y2=4外切,求圆心M的轨迹方程。
例4、△ABC中,B(-5,0),C(5,0),且sinC-sinB=sinA,求点A的轨迹方程。
例5、定长为3的线段AB的两个端点在y=x2上移动,AB中点为M,求点M到x轴的最短距离。
例6、已知椭圆过其左焦点且斜率为1的直线与椭圆及准线从左到右依次变于A、B、C、D、设f(m)=,(1)求f(m),(2)求f(m)的最值。
同步练习】
1、已知:F1,F2是双曲线的左、右焦点,过F1作直线交双曲线左支于点A、B,若,△ABF2的周长为( )
A、4a B、4a+m C、4a+2m D、4a-m
2、若点P到点F(4,0)的距离比它到直线x+5=0的距离小1,则P点的轨迹方程是
( )
A、y2=-16x B、y2=-32x C、y2=16x D、y2=32x
3、已知△ABC的三边AB、BC、AC的长依次成等差数列,且,点B、C的坐标分别为(-1,0),(1,0),则顶点A的轨迹方程是( )
A、 B、
C、 D、
4、过原点的椭圆的一个焦点为F(1,0),其长轴长为4,则椭圆中心的轨迹方程是
( )
A、 B、
C、 D、
5、已知双曲线上一点M的横坐标为4,则点M到左焦点的距离是
6、抛物线y=2x2截一组斜率为2的平行直线,所得弦中点的轨迹方程是
7、已知抛物线y2=2x的弦AB所在直线过定点p(-2,0),则弦AB中点的轨迹方程是
8、过双曲线x2-y2=4的焦点且平行于虚轴的弦长为
9、直线y=kx+1与双曲线x2-y2=1的交点个数只有一个,则k=
10、设点P是椭圆上的动点,F1,F2是椭圆的两个焦点,求sin∠F1PF2的最大值。
11、已知椭圆的中心在原点,焦点在x轴上,左焦点到坐标原点、右焦点、右准线的距离依次成等差数列,若直线l与
显示全部