24.2.2《直线和园的位置关系—切线的判定》课件(人教版数学九年级上册)2.ppt
文本预览下载声明
切 线 的 判 定;复 习;想一想;判 断;判断一条直线是圆的切线,你现在会有多少种方法?;〖例1〗;〖例2〗;小 结;练 习;证明:连结OP。
∵AB=AC,∴∠B=∠C。
∵OB=OP,∴∠B=∠OPB,
∴∠OBP=∠C。
∴OP∥AC。
∵PE⊥AC,
∴PE⊥OP。
∴PE为⊙0的切线。;课堂小结;1.判断: (1)经过半径的一个端点,并且垂直于这条半径的直线是圆的切
(2)若一条直线与圆的半径垂直,则这条直线是圆的切线 (3)以直角边为半径的圆一定与另一条直角边相切。 (4)以等腰三角形斜边的中点为圆心,直角边的一半为半径的圆,与两 条直角边相切。2.下列命题中的假命题是: A.和圆有唯一公共点的直线是圆的切线 B.过直径一端且垂直于这直径的直线是圆的切线 C.点A在直线l上,⊙O半径为r,若OA=r时,则l是⊙O的切线 D.⊙O的直径为a,则O点直线的距离为d,若d= ??a时,则l是⊙O 的切线。;3.如图,AB是⊙O的直径,PB是⊙O的切线,PA交⊙O于点C,若AB=6 cm,PB=8cm,则AC=,PC=cm。 ???????????????????????????????? 4.已知:如图,⊙O的直径长6cm,OA=OB=5cm,AB=8cm,求证:AB 与⊙O相切。 ????????????????????????? 5.已知:如图,ABCD为直角梯形,AB⊥BC,CD=AD+BC,求证:以CD 为直径的圆与AB相切。 分析:要证明以CD为直径的圆与AB相切,只要证明圆心O到AB的距离等 于⊙O直径的一半即可。 ??????????????????? ; ?? 本讲着重介绍了“切线的判定定理”利用此定理判定一条直线是否为 圆的切线时,必须注意直线是否符合题设的两个条件,二者缺一不可. ; ?? 在证明一条直线是圆的切线时,常常要添加辅助线,一般有以下两种情况: (1)如果已知直线过圆上某一点,则可作出过这点的半径,并证明直线 与这条半径垂直。 (2)若已知直线和圆的公共点没有确定,这时应过圆心作已知直线的垂 线,再证明圆心到直线的距离等于半径。
;再见!
显示全部