北师大八年级数学教案.doc
文本预览下载声明
课题:探索勾股定理
授课日期8.28授课班级:八年级 授课人:刘晓明总课时数1教学
目标1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。
2 、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单推理的意识及
能力。 教
材
分
析重点了解勾股定理的由来并能用它解决一些简单问题。 难点勾股定理的发现。教
学过
程一、创设问题的情境,激发学生的学习热情:
我们知道,任意三角形的三条边必须满足定理:三角形的两边之和大于第三边。对于等腰三角
形和等边三角形的边,除满足三边关系定理外,它们还分别存在着两边相等和三边相等的特殊
关系。那么对于直角三角形的边,除满足三边关系定理外,它们之间也存在着特殊的关系,这
就是我们这一节要研究的问题:勾股定理。我国是最早了解勾股定理的国家之一介绍商高
(三千多年前周期数学家)。
1、 观察图1一2,正方形A中有 个小方格,即A的面积为个 面积单位。
正方形 B 中有 个小方格.即B的面积为 个面积单位。
正方形 C 中有 个小方格,即C的面积为 个面积单位。
2、你是怎样得出上面结果的?在学生交流回答的基础上教师接着发问。
3、图 l一2 中,A、B、C之间的面积之间有什么关系?
在学生交流后形成共识老师板书。A + B=C ,接着提出图1一1中A、B、C的关系呢?
二、做一做
提问: 1、图1一 3中,A 、B、C之间有什么关系?
2、图1 一 4中,A 、 B 、C 之间有什么关系?
3、 从图 1一l 、 1一2 、1一3 、l一4中你发现了什么?
在学生讨论、交流形成共识后,老师总结:
以直角三角形两直角边为边的正方形面积和,等于以斜边为边的正方形面积。
三、议一议
1、图1一1、1一2、1一3、1一4中,你能用三角边的边长表示正方形的面积吗?
2、你能发现直角三角形三边长度之间的关系吗?在同学的交流基础上,老师板书:
直角三角边的两直角边的平方和等于斜边的平方。这就是著名的“勾股定理”。
也就是说:如果直角三角形的两直角边为a、b,斜边为c。那么教
学
过
程
我国古代称直角三角形的较短的直角边为勾,较长的直角边为股,斜边为弦,这就是勾股定理的由来.
3、分别以5厘米和12厘米为直角边作出一个直角三角形,并测量斜边的长度(学生测量后回答斜边为13)请大家想一想(2)中的规律对这个三角形仍然成立吗?(回答是肯定的:成立。)4,(想一想):这里的29英寸(74厘米)的申视机,指的是屏幕的长吗?指的屏幕的宽吗?那它指的是什么呢?
四、巩固练习精选练习,掌握应用:
勾股定理的应用是本节教学的重点,一定要让学生熟练地掌握在直角三角形中已知两边求第三边的方法,为此,可设计下列三组具有梯度性的练习:
练习1(填空题)
已知在Rt△ABC中,∠C=90°
①若a=3,b=4,则c=________;
②若a=40,b=9,则c=________;③若a=6,c=10,则b=_______;④若c=25,b=15,则a=________。
练习2(填空题)已知在Rt△ABC中,∠C=90°,AB=10。①若∠A=30°,则BC=______,AC=_______;②若∠A=45°,则BC=______,AC=_______。练习3已知等边三角形ABC的边长是6cm。求(1)高AD的长; (2)△ABC的面积。
课本 P6 习题1.1 2 、3、4
六、教学反思:本节内容重在探索与发现,要给充分的时间让学生讨论与交流。适当的练习以巩固所学也是必要的,当然,这些内容还需在后面的教学内容在加深加广。
教学
后记年级组长签阅板
书
设
计教研组长签阅
课题:探索勾股定理
授课日期8.29授课班级:八年级授课人:刘晓明总课时数2教学
目标1、经历运用拼图的方法说明勾股定理是正确的过程,在数学活动发展学生的探究意识和合作
交流的习惯2、掌握勾股定理和它的简单应用。教
材
分
析重
显示全部