【备战2016】(上海版)高考数学分项汇编专题09圆锥曲线(含解析)文精要.doc
文本预览下载声明
专题09 圆锥曲线
一.基础题组
1. 【2014上海,文4】若抛物线y2=2px的焦点与椭圆的右焦点重合,则该抛物线的准线方程为___________.
【答案】.
【考点】椭圆与抛物线的几何性质
2. 【2013上海,文12】设AB是椭圆Γ的长轴,点C在Γ上,且CBA=.若AB=4,BC=,则Γ的两个焦点之间的距离为______. 13上海,文18】记椭圆=1围成的区域(含边界)为Ωn(n=1,2,…),当点(x,y)分别在Ω1,Ω2,…上时,x+y的最大值分别是M1,M2,…,则=( )A.0 B. C.2 D.D 若动点P到点F(2,0)的距离与它到直线x+2=0的距离相等,则点P的轨迹方程为________.y2=8x
在平面直角坐标系中,双曲线Γ的中心在原点,它的一个焦点坐标为(,0),e1=(2,1)、e2=(2,-1)分别是两条渐近线的方向向量.任取双曲线Γ上的点P,若=ae1+be2(a、b∈R),则a、b满足的一个等式是________.4ab=1
(2009上海,文9)过点A(1,0)作倾斜角为的直线,与抛物线y2=2x交于M、N两点,则|MN|=.
【答案】
7. (2009上海,文12)已知F1、F2是椭圆C:(a>b>0)的两个焦点,P为椭圆C上一点,且.若△PF1F2的面积为9,则b=.
【答案】3
8. 【2008上海,文6】若直线经过抛物线的焦点,则实数___.
【答案】-1
9. 【2008上海,文12】设是椭圆上的点.若是椭圆的两个焦点,则等于( )
A.4 B.5 C.8 D.10
【答案】D
10. 【2007上海,文5】以双曲线的中心为顶点,且以该双曲线的右焦点为焦点的抛物线方程是 .
【解析】
11. 【2006上海,文7】已知双曲线中心在原点,一个顶点的坐标为,且焦距与虚轴长之比为,则双曲线的标准方程是____________________.
12. 【2005上海,文7】若椭圆长轴长与短轴长之比为2,它的一个焦点是,则椭圆的标准方程是__________.
【答案】
【解后反思】在求椭圆方程和研究性质时,要深刻理解确定椭圆的形状及大小的主要特征数,如a、b、c、p、e的几何意义及它们的关系式,熟练运用这些公式解决有关问题.
二.能力题组
1. 【2014上海,文22】(本题满分16分)本题共3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分.
在平面直角坐标系中,对于直线:和点记若0,则称点被直线分隔.若曲线C与直线没有公共点,且曲线C上存在点被直线分隔,则称直线为曲线C的一条分隔线.
⑴ 求证:点被直线分隔;
⑵若直线是曲线的分隔线,求实数的取值范围;
⑶动点M到点的距离与到轴的距离之积为1,设点M的轨迹为E,求的方程,并证明轴为曲线的分割线.
【答案】(1)证明见解析;(2);(3)证明见解析.
【考点】新定义,直线与曲线的公共点问题.
2. 【2013上海,文23】如图,已知双曲线C1:-y2=1,曲线C2:|y|=|x|+1.P是平面内一点,若存在过点P的直线与C1、C2都有公共点,则称P为“C1C2型点”.
C1的左焦点是“C1C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);
(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1C2型点”;
(3)求证:圆x2+y2=内的点都不是“C1C2型点”.(1) x=或y=,其中|k|≥ (2)参考解析; (3)参考解析
3. 【2012上海,文22】在平面直角坐标系xOy中,已知双曲线C1:2x2-y2=1.
(1)设F是C的左焦点,M是C右支上一点,若,求点M的坐标;
(2)过C的左顶点作C的两条渐近线的平行线,求这两组平行线围成的平行四边形的面积;
(3)设斜率为k(|k|<)的直线l交C于P,Q两点,若l与圆x2+y2=1相切,求证:OP⊥OQ.
(1) M(,) (2) ; (3)参考解析
4. 【2010上海,文23】已知椭圆Γ的方程为+=1(a>b>0),A(0,b),B(0,-b)和Q(a,0)为Γ的三个顶点.
(1)若点M满足= (+),求点M的坐标;
(2)设直线l1:y=k1x+p交椭圆Γ于C、D两点,交直线l2:y=k2x于点E.若k1·k2=-,证明:E为CD的中点;
(3)设点P在椭圆Γ内且不在x轴上,如何构作过PQ中点F的直线l,使得l与椭圆Γ的两个交点P1、P2满足+=?令a=10,b=5,点P的坐标是(-8,-1),若椭圆Γ上的点P1、P2满足+=,求点P1、P2的坐标.(1) (,-) (2) 参考解析;(3)
显示全部