高考数学总复习------ 三角函数高考数学总复习------ 三角函数.doc
文本预览下载声明
高考数学总复习------三角函数
【重点知识回顾】
三角函数是传统知识内容中变化最大的一部分,新教材处理这一部分内容时有明显的降调倾向,突出正、余弦函数的主体地位,加强了对三角函数的图象与性质的考查,因此三角函数的性质是本章复习的重点。第一轮复习的重点应放在课本知识的重现上,要注重抓基本知识点的落实、基本方法的再认识和基本技能的掌握,力求系统化、条理化和网络化,使之形成比较完整的知识体系;第二、三轮复习以基本综合检测题为载体,综合试题在形式上要贴近高考试题,但不能上难度。当然,这一部分知识最可能出现的是“结合实际,利用少许的三角变换(尤其是余弦的倍角公式和特殊情形下公式的应用)来考查三角函数性质”的命题,因此,建议三角函数的复习应控制在课本知识的范围和难度上,这样就能够适应未来高考命题趋势。总之,三角函数的复习应立足基础、加强训练、综合应用、提高能力
方法技巧:
1.八大基本关系依据它们的结构分为倒数关系、商数关系、平方关系,用三角函数的定义反复证明强化记忆,这是最有效的记忆方法。诱导公式用角度制和弧度制表示都成立,记忆方法可概括为“奇变偶不变,符号看象限”,变与不变是相对于对偶关系的函数而言的
2.三角函数值的符号在求角的三角函数值和三角恒等变换中,显得十分重要,根据三角函数的,可简记为“一全正,二正弦,三两切,四余弦”,其含义是:在第一象限各三角函数值皆为正;在第二象限正弦值为正;在第三象限正余切值为正;在第四象限余弦值为正
3.在利用同角三角函数的基本关系式化简、求值和证明恒等关系时,要注意用是否“同角”来区分和选用公式,注意切化弦、“1”的妙用、方程思想等数学思想方法的运用,在利用诱导公式进行三角式的化简、求值时,要注意正负号的选取
4.求三角函数值域的常用方法:
求三角函数值域除了判别式、重要不等式、单调性等方法之外,结合三角函数的特点,还有如下方法:
(1)将所给三角函数转化为二次函数,通过配方法求值域;
(2)利用的有界性求值域;
(3),,的图象与性质,并挖掘:
⑴最值的情况;
⑵了解周期函数和最小正周期的意义.会求的周期,或者经过简单的恒等变形可化为上述函数的三角函数的周期,了解加了绝对值后的周期情况;
⑶会从图象归纳对称轴和对称中心;
的对称轴是,对称中心是;
的对称轴是,对称中心是
的对称中心是
注意加了绝对值后的情况变化.
⑷写单调区间注意.
(二)了解正弦、余弦、正切函数的图象的画法,会用“五点法”画正弦、余弦函数和函数的简图,并能由图象写出解析式.
⑴“五点法”作图的列表方式;
⑵求解析式时处相的确定方法:代(最高、低)点法、公式.
(三)正弦型函数的图象变换方法如下:
先平移后伸缩
的图象
得的图象
得的图象
得的图象
得的图象.
先伸缩后平移
的图象
得的图象
得的图象
得的图象得的图象.
【典型例题】
例1.已知,求(1);(2)的值.
解:(1);
(2)
.
说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化
例2.已知向量
,且,
(1)求函数的表达式;
(2)若,求的最大值与最小值
解:(1),,,又,
所以,
所以,即;
(2)由(1)可得,令导数,解得,列表如下:
t -1 (-1,1) 1 (1,3) 导数 0 - 0 + 极大值 递减 极小值 递增 而所以
说明:本题将三角函数与平面向量、导数等综合考察,体现了知识之间的融会贯通。
例3. 平面直角坐标系有点
(1)求向量和的夹角的余弦用表示的函数;
(2)求的最值.
解:(1),
即
(2) , 又 ,
, , .
说明:三角函数与向量之间的联系很紧密,解题时要时刻注意
例4. 设 ( ([0, ], 且 cos2(+2msin(-2m-20 恒成立, 求 m 的取值范围.
解法 1 由已知 0≤sin(≤1 且 1-sin2(+2msin(-2m-20 恒成立.
令 t=sin(, 则 0≤t≤1 且 1-t2+2mt-2m-20 恒成立.
即 f(t)=t2-2mt+2m+1=(t-m)2-m2+2m+10 对 t([0, 1] 恒成立.
故可讨论如下:
(1)若 m0, 则 f(0)0. 即 2m+10. 解得 m, ∴m0;
(2)若 0≤m≤1, 则 f(m)0. 即 -m2+2m+10. 亦即 m2-2m-10. 解得: 1m1+, ∴0≤m≤1;
(3)若 m1, 则 f(1)0. 即 0(m+20. ∴m(R, ∴m1.
综上所述 m. 即 m 的取值范围是 (, +∞).
解法 2 题中不等式即为 2(1-sin()m-1-sin2(.∵(([0, ], ∴0≤sin(≤1.
当 sin(=
显示全部