Laplace多尺度图像增强去噪算法.pdf
文本预览下载声明
《农业网络信息》 年第 期 交流园地
2010 11
Laplace 多尺度图像增强去噪算法
刘鹏飞,梅树立
(中国农业大学信息与电气工程学院,北京100083)
摘 要:针对传统的单尺度图像增强算法的不足,提出了一种基于Laplace 多尺度分解的图像增强算法。该算法将图像
分为由高频到低频若干个子图像,对每个频道的细节图像进行不同的非线性变换,使得图像中最细微的、对诊断有用的
信息得到有效的增强,同时图像又不被过增强,再通过分解的逆过程重建图像。试验表明,该方法能有效提高图像中细
节的清晰度并抑制噪声。
关键词:Laplace 多尺度分解;图像增强;反锐化掩模
中图分类号:TP317.4 文献标识码:B 文章编码:1672-6251 (2010)11-0142-03
Image Enhancement and Denoising Method Based on Multi-scale Laplacian Decomposition
LIU Pengfei, MEI Shuli
(College of Information and Electrical Engineering China Agricultural University, Beijing 100083)
Abstract: In view of the defects of traditional single scale image enhancement methods, a medical image enhancement method
based on multi -scale laplacian decomposition was proposed. The original image was firstly decomposed into certain number of
frequency channels from high frequency to low frequency. These detail images were enhanced by different nonlinear transformation
to enhance the subtle and diagnosis-important information, and then the multi-scale representation was converted back into the
reconstructed image. The experimental results showed that the proposed method could effectively improve image clarity.
Key words: Laplacian decomposition; image enhancement; unsharp masking
[2] [3]
1 引言 方反锐化掩模算法 、 自适应反锐化掩模算法 、 有理
[4]
图像处理中, 常常有一些比较细微的细节信息是 反锐化掩模算法 等。 这些算法利用像素的活跃
显示全部