文档详情

四边形综合提升.doc

发布:2018-07-02约2.93千字共8页下载文档
文本预览下载声明
PAGE 1 学员学校: 年 级: 课 时 数: 学员姓名: 辅导科目: 学科教师:授课类型C-四边形综合授课日期及时段 教学内容 题型一:翻折类1、有一张矩形纸片ABCD,AD=9,AB=12,将纸片折叠使A、C两点重合,那么折痕长是   .2、如图,将正方形纸片ABCD沿MN折叠,使点D落在边AB上,对应点为D′,点C落在C′处.若AB=6,AD′=2,则折痕MN的长为________. 3、如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,则AE的长为________.4、如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为________. 如图,矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为________.题型二:旋转类1、如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)如图2,正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°),得到正方形OE′F′G′;①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为2,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.题型三:最值类1、如图,在正方形ABCD中,点E、G分别是边AD、BC的中点,AF=AB.(1)求证:EF⊥AG;(2)若点F、G分别在射线AB、BC上同时向右、向上运动,点G运动速度是点F运动速度的2倍,EF⊥AG是否成立(只写结果,不需说明理由)?(3)正方形ABCD的边长为4,P是正方形ABCD内一点,当S△PAB=S△OAB,求△PAB周长的最小值. 2、探究;(1)如图1,P、Q为△ABC的边AB、AC上的两定点,在BC上求作一点M,使△PQM的周长最短.(不写作法)(2)如图2,矩形ABCD中,AB=6,AD=8,E、F分别为边AB、AD的中点,点M、N分别为BC、CD上的动点,求四边形EFNM周长的最小值.(3)如图3,正方形ABCD的边长为2,点O为AB边中点,在边AD、CD、BC上分别确定点M、N、P.使得四边形OMNP周长最小,并求出最小值.题型四:动态几何类1、如图,在长方形ABCD中,边AB、BC的长(AB<BC)是方程x2﹣7x+12=0的两个根.点P从点A出发,以每秒1个单位的速度沿△ABC边 A→B→C→A的方向运动,运动时间为t(秒).(1)求AB与BC的长;(2)当点P运动到边BC上时,试求出使AP长为时运动时间t的值;(3)当点P运动到边AC上时,是否存在点P,使△CDP是等腰三角形?若存在,请求出运动时间t的值;若不存在,请说明理由. 2、如图,在直角坐标系xOy中,矩形OABC的顶点A、C分别在x轴和y轴正半轴上,点B的坐标是(5,2),点P是CB边上一动点(不与点C、点B重合),连结OP、AP,过点O作射线OE交AP的延长线于点E,交CB边于点M,且∠AOP=∠COM,令CP=x,MP=y.(1)当x为何值时,OP⊥AP?(2)求y与x的函数关系式,并写出x的取值范围;(3)在点P的运动过程中,是否存在x,使△OCM的面积与△ABP的面积之和等于△EMP的面积?若存在,请求x的值;若不存在,请说明理由. 题型五:新定义1、定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫凸四边形的准内点.如图1,PH=PJ,PI=PG,则点P就是四边形ABCD的准内点.(若对边平行,则准内点在平行线之间垂线段的垂直平分线上,若对边不平行,则准内点在对边延长线夹角的角平分线上.)(1)如图2作出梯形ABCD的准内点P;(不写作法,保留作图痕迹,并用签字填涂清晰)准内点P是梯形高的   和两腰延长线夹角的   的交点.(2)如图3,∠AFD与∠DEC的角平分线FP,EP相交于点P.求证:点P是四边形ABCD的准内点.2、如图1,我们把对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边
显示全部
相似文档