文档详情

上三角矩阵环的半交换子环.pdf

发布:2017-05-29约1.86万字共5页下载文档
文本预览下载声明
维普资讯 第 30卷 第 5期 西 南 师 范 大 学 学 报 (自然科学版) 2005年 1O月 Vo1.30 No.5 JournalofSouthwestChinaNormalUniversity(NaturalScience) oct. 2005 文章编号 :i000—5471(2005)05—0771—05 SemicommutativeSubringsof (R) ZHANG chun—xia. LIU Zhong—kui CollegeofMathematicsandInformationScience。NorthwestNormalUniversity。LanzhouGansu730070。China Abstract:Inthispaper,theauthorsconsidersemicommutativepropertiesofsomesubringsofthen×nuppertrian— gularmatrixringT (尺)overareducedring,includingA (尺)( 一 2k+ 1≥ 3),andA (R)+ RE1 . 。 (n一 2k≥ 4). Nextsomemaximalsemicommutativesubringsof (尺)aregiven. Keywords:semicommutativering;reducedring;uppertriangularmatrixring;polynom ialring CLC number:O153.3 Documentcode:A A ringR iscalledsemicommutativeifforeveryaE R,{bER Iab一 0}isanidealofR.Theterm of semicommutativeringswasinitiatedbyShinandstudiedin[1—3].AringRiscalledreducedifithasno nonzeronilpotentelements.Clearlyreducedringsaresemicommutativeandsubringsofsemicommutative ringsarealsosemicommutative.Throughoutthispaper,allringsareassociativewith identity . W ewrite R[],M (R)andT (R)forthepolynomialring,the × matrixringandthe × uppertriangularma— trixringoverR,respectively.The × identitymatrixisdenotedby,.ForanyA ∈ M (R),letRA 一 一 1 {rAIr∈R}.For≥2,letV一∑E件1where{E I1≤i,J≤ }arethematrixunits. i= 1 By[1],T (R)isnotsemicommutativeforanyringRand ≥2,forareducedringR,RI3
显示全部
相似文档