上三角矩阵环的半交换子环.pdf
文本预览下载声明
维普资讯
第 30卷 第 5期 西 南 师 范 大 学 学 报 (自然科学版) 2005年 1O月
Vo1.30 No.5 JournalofSouthwestChinaNormalUniversity(NaturalScience) oct. 2005
文章编号 :i000—5471(2005)05—0771—05
SemicommutativeSubringsof (R)
ZHANG chun—xia. LIU Zhong—kui
CollegeofMathematicsandInformationScience。NorthwestNormalUniversity。LanzhouGansu730070。China
Abstract:Inthispaper,theauthorsconsidersemicommutativepropertiesofsomesubringsofthen×nuppertrian—
gularmatrixringT (尺)overareducedring,includingA (尺)( 一 2k+ 1≥ 3),andA (R)+ RE1
. 。 (n一 2k≥ 4).
Nextsomemaximalsemicommutativesubringsof (尺)aregiven.
Keywords:semicommutativering;reducedring;uppertriangularmatrixring;polynom ialring
CLC number:O153.3 Documentcode:A
A ringR iscalledsemicommutativeifforeveryaE R,{bER Iab一 0}isanidealofR.Theterm of
semicommutativeringswasinitiatedbyShinandstudiedin[1—3].AringRiscalledreducedifithasno
nonzeronilpotentelements.Clearlyreducedringsaresemicommutativeandsubringsofsemicommutative
ringsarealsosemicommutative.Throughoutthispaper,allringsareassociativewith identity
. W ewrite
R[],M (R)andT (R)forthepolynomialring,the × matrixringandthe × uppertriangularma—
trixringoverR,respectively.The × identitymatrixisdenotedby,.ForanyA ∈ M (R),letRA 一
一 1
{rAIr∈R}.For≥2,letV一∑E件1where{E I1≤i,J≤ }arethematrixunits.
i= 1
By[1],T (R)isnotsemicommutativeforanyringRand ≥2,forareducedringR,RI3
显示全部