文档详情

二氧化碳吸收与解吸实验说明书资料.doc

发布:2016-03-20约4.04千字共14页下载文档
文本预览下载声明
二氧化碳吸收与解吸实验装置说明书 仁爱化工基础实验中心 王立轩 2014.05 一、实验目的: 1.了解填料吸收塔的结构和流体力学性能。 2.学习填料吸收塔传质能力和传质效率的测定方法。 二、实验内容 1. 测定填料层压强降与操作气速的关系,确定填料塔在一定液体喷淋量下的液泛气速。 2. 固定液相流量和入塔混合气氨的浓度,在液泛速度以下取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。 3. 采用纯水吸收二氧化碳、空气解吸水中二氧化碳,测定填料塔的液侧传质膜系数和总传质系数。 三、实验原理 1.气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。压强降与气、液流量有关,不同液体喷淋量下填料层的压强降与气速的关系如图1-1所示: 图1-1 填料层的~关系 当无液体喷淋即喷淋量时,干填料的~的关系是直线,如图中的直线0。当有一定的喷淋量时,~的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将~关系分为三个区段:恒持液量区、载液区与液泛区。 2. 传质性能:吸收系数是决定吸收过程速率高低的重要参数,而实验测定是获取吸收系数的根本途径。对于相同的物系及一定的设备(填料类型与尺寸),吸收系数将随着操作条件及气液接触状况的不同而变化。 (1)二氧化碳吸收-解吸实验 根据双膜模型的基本假设,气侧和液侧的吸收质A的传质速率方程可分别表达为 气膜 (1-1) 液膜 (1-2) 式中:—A组分的传质速率,; —两相接触面积,m2; —气侧A组分的平均分压,Pa; —相界面上A组分的平均分压,Pa; —液侧A 组分的平均浓度, —相界面上A组分的浓度 —以分压表达推动力的气侧传质膜系数,; —以物质的量浓度表达推动力的液侧传质膜系数,。 以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别表达为: (1-3) (1-4) 式中:—液相中A组分的实际浓度所要求的气相平衡分压,Pa; —气相中A组分的实际分压所要求的液相平衡浓度,; —以气相分压表示推动力的总传质系数或简称为气相传质总系数,; -以气相分压表示推动力的总传质系数,或简称为液相传质总系数,。 P2=PA2 CA2 ,FL PA PAi CAi CA PA CA PA+d PA CA+dCA P1=PA1 CA1,FL 图1-2双膜模型的浓度分布图 图1-3 填料塔的物料衡算图 若气液相平衡关系遵循享利定律:,则: (1-5) (1-6) 当气膜阻力远大于液膜阻力时,则相际传质过程式受气膜传质速率控制,此时,;反之,当液膜阻力远大于气膜阻力时,则相际传质过程受液膜传质速率控制,此时,。 如图1-3所示,在逆流接触的填料层内,任意载取一微分段,并以此为衡算系统,则由吸收质A的物料衡算可得: (1-7a) 式中:——液相摩尔流率,; ——液相摩尔密度,。 根据传质速率基本方程式,可写出该微分段的传质速率微分方程: (1-7b) 联立上两式可得: (1-8) 式中:——气液两相接触的比表面积, m2·m-1; ——填料塔的横载面积,m2。 本实验采用水吸收纯二氧化碳,且已知二氧化碳在常温常压下溶解度较小,因此,液相摩尔流率和摩尔密度的比值,亦即液相体积流率可视为定值,且设总传质系数KL和两相接触比表面积a,在整个填
显示全部
相似文档