人教版教学课件中生物人教版必修一第5章第4节:《能量之源-光与光合作用》课件.ppt
文本预览下载声明
有些蔬菜大棚用红色或蓝色的塑料薄膜代替普通塑料薄膜,有的温室内悬挂发红色或蓝色的灯管。 能量的最终来源于光能。 捕获光能的色素 我们知道,玉米中有时会出现白化苗。白化苗由于不能进行光合作用,待种子中贮存的养分耗尽就会死亡。可见光合作用与细胞中的色素有关。 叶绿素a和合叶绿素b主要吸收蓝紫光和红光,胡萝卜素和叶红素主要吸收蓝紫光。 注:因为叶绿素对绿光吸收最少,绿光被反射回来,所以叶片才呈现绿色。 1817年,两位法国科学家首次从植物中分离出叶绿素,当时并不清楚叶绿素在植物细胞中的分布情况。 1865年,德国植物学家萨克斯研究叶绿素在光合作用中的功能时,发现叶绿素并非普遍分布在植物的整个细胞中,而是集中在一个更小的结构里,后来人们称之为叶绿体。 结论: 叶绿体是进行光合作用的场所,它内部的巨大膜表面上,不仅分布着许多吸收光能的色素分子,还有许多进行光合作用所必需的酶。 1864年,德国萨克斯实验 光反应 黑暗处理 一昼夜 让一张叶片一半 曝光一半遮光 绿叶在光下制造淀粉。 用碘蒸气处理这片叶,发现曝光的一半呈深蓝色,遮光的一半则没有颜色变化。 光合作用释放的O2来自CO2还是H2O? 第一组 光合作用产生的O2来自于H2O。 H2180 C02 H20 C18O2 第二组 1802 02 美国鲁宾和卡门实验(同位素标记法) 光合作用产生的有机物又是怎样合成的? 返回 光合作用氧气来源的探究(1839年) 美国卡尔文 用14C标记14CO2,供小球藻进行光合作用,探明了CO2中的C的去向,称为卡尔文循环。 植物可以更新空气 普利斯特利 1771 光合产物中有机物的碳来自CO2 卡尔文 20世纪40代 光合作用释放的氧来自水。 鲁宾 卡门 1939 氧由叶绿体释放出来。叶绿体是光合作用的场所。 恩格尔曼 1880 绿色叶片光合作用产生淀粉 萨克斯 1864 植物在光合作用时把光能转变成了化学能储存起来 R.梅耶 1845 只有在光照下只有绿叶才可以更新空气 英格豪斯 1779 水分是植物建造自身的原料 海尔蒙特 1664 结论 科学家 年代 绿色植物通过叶绿体,利用光能,把CO2和H2O转化成储存能量的有机物,并释放出O2的过程。 反应物、条件、场所、生成物 CO2+H2O (CH2O)+O2 光能 叶绿体 糖类 光合作用过程 光反应 暗反应 划分依据:反应过程是否需要光能 光反应在白天可以进行吗?夜间呢? 暗反应在白天可以进行吗?夜间呢? 有光才能反应 有光、无光都能反应 H2O 类囊体膜 酶 Pi +ADP ATP 光反应阶段 光、色素、酶 叶绿体内的类囊体薄膜上 水的光解: H2O [H] + O2 光能 (还原剂) ATP的合成: ADP+Pi +能量(光能) ATP 酶 光能转变为活跃的化学能贮存在ATP中 [H] 场所: 条件: 物质变化 能量变化 进入叶绿体基质,参与暗反应 供暗反应使用 CO2 五碳化合物 C5 CO2的固定 三碳化合物 2C3 C3的还原 叶绿体基质 多种酶 H2O 类囊体膜 酶 Pi +ADP ATP [H] 糖类 卡尔文循环 暗反应阶段 CO2的固定: CO2+C5 2C3 酶 C3的还原: ATP [H] 、 ADP+Pi 叶绿体的基质中 ATP中活跃的化学能转变为糖类等 有机物中稳定的化学能 2C3 (CH2O) 酶 糖类 [H] 、ATP、酶 场所: 条件: 物质变化 能量变化 CO2 五碳化合物 C5 CO2的固定 三碳化合物 2C3 叶绿体基质 多种酶 糖类 ATP [H] 联系 比较光反应、暗反应 光反应阶段 暗反应阶段 条件 场所 物质变化 能量变化 光、色素、酶 不需光、酶、[H]、ATP 叶绿体类囊体膜 叶绿体基质中 水的光解; ATP的生成 CO2的固定; C3的还原 ATP中活 跃化学能 光能 ATP中活 跃化学能 有机物中稳 定化学能 光反应是暗反应的基础,为暗反应提供[H]和ATP,暗反应为光反应提供ADP和Pi 。 CO2+H2O (CH2O)+O2 光能 叶绿体 色素分子 可见光 C5 2C3 ADP+Pi ATP 2H2O O2 4[H] 多种酶 酶 (CH2O) CO2 吸收 光解 能 固定 还原 酶 光反应 暗反应 光合作用
显示全部