文档详情

图形认识初步复习11.doc

发布:2017-04-26约字共5页下载文档
文本预览下载声明
图形认识初步复习(两课时) 组 号 姓名 学案编号12作者:林国芳 【复习目标】:1.直观认识立体图形,掌握平面图形(线段、射线、直线)的基本知识; 2.掌握角的基本概念,能利用角的知识解决一些实际问题。 【复习重点】: 线段、射线、直线、角的性质和运用 【复习难点】:角的运算与应用;空间观念建立和发展;几何语言的认识与运用。 【课前导学案】 平面图形 从不同方向看立体图形 展开立体图形 平面图形 几何图形 立体图形 直线、射线、线段 角 两点之间,线段最短 线段大小的比较 角的度量 角的比较与运算 余角和补角 角的平分线 等角的补角相等 等角的余角相等 两点确定一条直线 一、知识结构 二、回顾与思考 1、下面是我们学习过的一些数学名词,你能用自己的语言简短地描述它们吗? 立体图形 平面图形 展开图 两点间的距离 余角 补角 2、与以前相比,你对直线、射线、线段和角有什么新的认识? 3、直线的性质: 经过两点有一条直线,并且只有一条直线。即: __________确定一条直线。 4、线段的性质和两点间的距离 (1)线段的性质:两点之间,_______________。 (2)两点间的距离:连接两点的_______________,叫做两点间的距离。 5、线段的中点及等分点的意义 (1)若点C把线段AB分为________的两条线段AC和BC,则点C叫做线段的中点。 角的概念 1、角的定义和表示 (1)有_______________的两条射线组成图形叫做角。这是从静止的角度来定义的。 由一条射线绕着_______________旋转而成的图形叫做角。这是从运动的角度来定义的。 (2)角的表示: ①用三个大写字母表示;②用一个大写字母表示;③用阿拉伯数字或希腊字母表示。 2、角的度量 10=60′;1′=60′′. 3、角的比较 比较角的方法:度量法和叠合法。 4、角的平分线 从一个角的顶点出发,把这个角分成________的两个角的射线,叫做这个角的平分线。 表示为 ∠AOC= ∠COB O A B C 或∠ AOC=∠COB=∠AOB 或2∠ AOC=2∠COB= ∠AOB 5、余角和补角 (1)定义:如果两个角的和等于______,就说这两个角互为余角。 如果两个角的和等于______,就说这两个角互为补角。 注意:余角和补角是两个角之间的关系;只与数量有有关,而与位置无关。 (2)余角和补角的性质: 同角(等角)的余角相等。 同角(等角)的补角相等。 6、方位角 三、例题导引 1 如右图是由几个小立方体所搭几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,画出从不同方向看到的平面图形。 1 1 2 2 2.(1)如图,点C在线段AB上,AC = 8 cm,CB = 6 cm,点M、N分别是AC、BC的中点,求线段MN的长; (2)若C为线段AB上任一点,满足AC + CB = a cm,其它条件不变,你能猜想MN的长度吗?并说明理由。 (3)若C在线段AB的延长线上,且满足ACBC = b cm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,并说明理由。 3、如图所示,已知是AB=16cm,C是AB上的一点, 且AC=10cm,D是AC的中点,E是BC的中点, 求线段DE的长 E D C B A 4、如图,AB和CD都是直线,∠ AOE=90°,∠3=∠FOD, ∠1=27°20′求∠2、∠3的度数 C O 2 1 3 B A F E D O B M A N C 5、如图,∠AOB是直角, ∠AOC=50°,ON是∠AOC的平分线, OM是∠ BOC的平分线。 (1)求∠ MON的大小; (2)当∠ AOC= 时, ∠ MON等于多少度? (3)当锐角∠ AOC的大小发生改变时, ∠ MON的大小 也会发生改变吗?为什么? 【课堂练习】 一、选择题: 1、下列说法正确的是 ( ) A.射线AB与射线BA表示同一条射线。 B.连结两点的线段叫做两点之间的距离。 C.平角是一条直线。 D.若∠1+∠2=900,∠1+∠3=900,则∠2=∠3; 2、5点整时,时钟上时针与分钟 之间的夹角是〔 〕 A.210° B.30° C.150° D.60° A B O 300 700 3、如图,射线OA表示〔 〕 A、南偏东700 B、北偏东300 C、南偏东300 D、北偏东700 4、下列图
显示全部
相似文档