高中数学平面向量专题复习(含例题练习).doc
文本预览下载声明
高中数学平面向量专题复习(含例题练习)
PAGE 1
专题八 平面向量
一、复习要求
一.向量有关概念:
1.向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。如:
2.零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的;
3.单位向量:长度为一个单位长度的向量叫做单位向量(与共线的单位向量是);
4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;
5.平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量和任何向量平行。
提醒:
①相等向量一定是共线向量,但共线向量不一定相等;
②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;
③平行向量无传递性!(因为有);
④三点共线共线;
6.相反向量:长度相等方向相反的向量叫做相反向量。的相反向量是-。如
下列命题:(1)若,则。(2)两个向量相等的充要条件是它们的起点相同,终点相同。(3)若,则是平行四边形。(4)若是平行四边形,则。(5)若,则。(6)若,则。其中正确的是_______
向量的表示
1.几何表示法:用带箭头的有向线段表示,如,注意起点在前,终点在后;
2.符号表示法:用一个小写的英文字母来表示,如,,等;
3.坐标表示法:在平面内建立直角坐标系,以与轴、轴方向
_________
(2)已知,与的夹角为,则等于____
(3)已知,则等于____
(4)已知是两个非零向量,且,则的夹角为____
3.在上的投影为,它是一个实数,但不一定大于0。如
已知,,且,则向量在向量上的投影为______
4.的几何意义:数量积等于的模与在上的投影的积。
5.向量数量积的性质:设两个非零向量,,其夹角为,则:
①;
②当,同向时,=,特别地,;当与反向时,=-;当为锐角时,>0,且不同向,是为锐角的必要非充分条件;当为钝角时,<0,且不反向,是为钝角的必要非充分条件;
③非零向量,夹角的计算公式:;④。如
(1)已知,,如果与的夹角为锐角,则的取值范围是______
(2)已知的面积为,且,若,则夹角的取值范围是_________
六.向量的运算:
1.几何运算:
①向量加法:利用“平行四边形法则”进行,但“平行四边形法则”只适用于不共线的向量,如此之外,向量加法还可利用“三角形法则”:设,那么向量叫做与的和,即;
②向量的减法:用“三角形法则”:设,由减向量的终点指向被减向量的终点。注意:此处减向量与被减向量的起点相同。如化简:①___;②____;③_____
2.坐标运算:设,则:
①向量的加减法运算:,。如
(1)已知点,,若,则当=____时,点P在第一、三象限的角平分线上
(2)已知,,则
②实数与向量的积:。
③若,则,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标。如
设,且,,则C、D的坐标分别是__________
④平面向量数量积:。如
已知向量=(sinx,cosx), =(sinx,sinx), =(-1,0)。(1)若x=,求向量、的夹角;(2)若x∈,函数的最大值为,求的值
⑤向量的模:。如
已知均为单位向量,它们的夹角为,那么=_____
⑥两点间的距离:若,则。
七.向量的运算律:
1.交换律:,,;
2.结合律:,;
3.分配律:,。
如下列命题中:① ;② ;③
;④ 若,则或;⑤若则;⑥;⑦;⑧;⑨。其中正确的是______
提醒:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约);(2)向量的“乘法”不满足结合律,即,为什么?
八.向量平行(共线)的充要条件:=0。如
(1)若向量,当=_____时与共线且方向相同
(2)已知,,,且,则x=______
(3)设,则k=_____时,A,B,C共线
九.向量垂直的充要条件: .特别地。如
(1)已知,若,则
(2)以原点O和A(4,2)为两个顶点作等腰直角三角形OAB,,则点B的坐标是________
(3)已知向量,且,则的坐标是________
十.向量中一些常用的结论:
(1)一个封闭图形首尾连接而成的向量和为零向量,要注意运用;
(2),特别地,当同向或有
;当反向或有;当不共线(这些和实数比较类似).
(3)在中,①若,则其重心的坐标为。如
若⊿ABC的三边的中点分别为(2,1)、(-3,4)、(-1,-1),则⊿ABC的重心的坐
显示全部