《成型高中数学必修4教案.doc
文本预览下载声明
1.4.1正弦、余弦函数的图象
教学目的:(1)理解并掌握用单位圆作正弦函数、余弦函数的图象的方法;(2)理解并掌握用“五点法”作正弦函数、余弦函数的图象的方法;
教学重点:用单位圆中的正弦线作正弦函数的图象;
教学难点:作余弦函数的图象。
教学过程:
一、复习引入:
1. 弧度定义:长度等于半径长的弧所对的圆心角称为1弧度的角。
2. 正、余弦定义:
3.正弦线、余弦线:
二、讲解新课:
1. 正、余弦函数定义:
2、函数图象画法:
(1)用单位圆中的正弦线、余弦线作正弦函数、余弦函数的图象(几何法):为了作三角函
根据终边相同的同名三角函数值相等,把上述图象沿着x轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx,x∈R的图象.
把角x的正弦线平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点的轨迹就是正弦函数y=sinx的图象.
(2)余弦函数y=cosx的图象
探究1:你能根据诱导公式,以正弦函数图象为基础,通过适当的图形变换得到余弦函数的图象?
根据诱导公式,可以把正弦函数y=sinx的图象向左平移单位即得余弦函数y=cosx的图象. (课件第三页“平移曲线” )
正弦函数y=sinx的图象和余弦函数y=cosx的图象分别叫做正弦曲线和余弦曲线.
思考:在作正弦函数的图象时,应抓住哪些关键点?
(2).用五点法作正弦函数和余弦函数的简图(描点法):
正弦函数y=sinxx∈[0,2π]的图象中,五个关键点是:(0,0) (,1) (?,0) (,-1) (2?,0)
余弦函数y=cosx x?[0,2?]的五个点关键是哪几个?(0,1) (,0) (?,-1) (,0) (2?,1)
只要这五个点描出后,图象的形状就基本确定了.因此在精确度不太高时,常采用五点法作正弦函数和余弦函数的简图,要求熟练掌握.
(1)y=1+sinx,x∈[0,2π], y=sinx,x∈〔0,2π〕的图象,通过图形变换)来得到
(1)y=1+sinx ,x∈〔0,2π〕的图象;
(2)y=sin(x- π/3)的图象?
小结:函数值加减,图像上下移动;自变量加减,图像左右移动。
探究3.
如何利用y=cos x,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到y=-cosx ,
x∈〔0,2π〕的图象?
小结:这两个图像关于X轴对称。
●探究4.
如何利用y=cos x,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到y=2-cosx ,x∈〔0,2π〕的图象?
小结:先作 y=cos x图象关于x轴对称的图形,得到 y=-cosx的图象,
再将y=-cosx的图象向上平移2个单位,得到 y=2-cosx 的图象。
三、巩固与练习
四、小 结:本节课学习了以下内容:
1.正弦、余弦曲线 几何画法和五点法
2.注意与诱导公式,三角函数线的知识的联系
五、课后作业:P46 A 1
1.4.2正弦、余弦函数的性质(一)
教学目的:要求学生能理解周期函数,周期函数的周期和最小正周期的定义;
掌握正、余弦函数的周期和最小正周期,并能求出正、余弦函数的最小正周期。
教学重点:正、余弦函数的周期性
教学难点:正、余弦函数周期性的理解与应用
教学过程:
一、复习引入:
1.问题:今天是星期一,则过了七天是星期几?过了十四天呢?……
2.观察正(余)弦函数的图象总结规律:
自变量 函数值
正弦函数性质如下:
(观察图象) 1? 正弦函数的图象是有规律不断重复出现的;
2? 规律是:每隔2?重复出现一次(或者说每隔2k?,k?Z重复出现)
3? 这个规律由诱导公式sin(2k?+x)=sinx可以说明
结论:象这样一种函数叫做周期函数。
文字语言:正弦函数值按照一定的规律不断重复地取得;
符号语言:当增加()时,总有.
也即:(1)当自变量增加时,正弦函数的值又重复出现;
(2)对于定义域内的任意,恒成立。
余弦函数也具有同样的性质,这种性质我们就称之为周期性。
二、讲解新课:
1.周期函数定义:对于函数f (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有:f (x+T)=f (x)那么函数f (x)就叫做周期函数,非零常数T叫做这个函数的周期。
问题:(1)对于函数,有,能否说是它的周期?
(2)正弦函数,是不是周期函数,如果是,周期是多少?(,且)
(3)若函数的周期为,则,也是的周期吗?为什么?
(是,其原因为:)
2、例题讲解
例1 求下列三角函数
显示全部