人教版八年级数学第..一次函数][教学设计.doc
文本预览下载声明
第3课时 §14.2.2一次函数(2)
备课人: 谢金香 辅备:刘衍锋、洪艳华
教学目标
1.掌握一次函数y=kx+b(k≠0)的性质.
2.能根据k与b的值说出函数的有关性质.
教学重点
1.一次函数中k与b的值对函数性质的影响;
2.结合图象体会一次函数k、b的取值和直线位置的关系,提高数形结合能力.
教学难点
一次函数k、b的取值和直线位置的关系,数形结合能力
教学过程
一.提出问题,创设情境
1.一次函数的图象是一条直线,一般情况下我们画一次函数的图象,取哪两个点比较简便?
2.在同一直角坐标系中,画出函数y=-6x和y=-6x+5的图象.
问 在所画的一次函数图象中,直线经过几个象限.
二.导入新课
(一) 思考:
(三)练习
例3 画出函数y=2x-1与y=-0.5x+1的图象.
分析:由于一次函数的图象是直线,所以只要确定两个点就能画出它.
列表,画图由学生完成.
(四)探究
观察前面一次函数的图象,可以发现规律:
当k>0时,直线y=kx+b由左至左上升,当k<0时,直线y=kx+b由左至右下降,由此填出:
一次函数y=kx+b(k,b是常数,k≠0),具有如下性质:
当k>0时,y随x的增大而 ;
当k<0时,y随x的增大而 。
下面,我们把一次函数中k与b的正、负与它的图象经过的象限归纳列表为:
三.例题与练习
例1 已知一次函数y=(2m-1)x+m+5,当m是什么数时,函数值y随x的增大而减小?
分析 一次函数y=kx+b(k≠0),若k<0,则y随x的增大而减小.
解 因为一次函数y=(2m-1)x+m+5,函数值y随x的增大而减小.
所以,2m-1<0,即.
例2 已知一次函数y=(1-2m)x+m-1,若函数y随x的增大而减小,并且函数的图象经过二、三、四象限,求m的取值范围.
分析 一次函数y=kx+b(k≠0),若函数y随x的增大而减小,则k<0,若函数的图象经过二、三、四象限,则k<0,b<0.
解 由题意得: ,
解得,
例3 已知一次函数y=(3m-8)x+1-m图象与y轴交点在x轴下方,且y随x的增大而减小,其中m为整数.
(1)求m的值;(2)当x取何值时,0<y<4?
分析 一次函数y=kx+b(k≠0)与y轴的交点坐标是(0,b),而交点在x轴下方,则b<0,而y随x的增大而减小,则k<0.
解 :由学生完成。
例4 说出直线y=3x+2与;y=5x-1与y=5x-4的相同之处.
分析 k相同,直线就平行.b相同,直线与y轴交于同一点,且交点坐标为(0,b).
解:由学生完成。
四.课时小结
1.(1)当k>0时,y随x的增大而增大,这时函数的图象从左到右上升;
(2)当k<0时,y随x的增大而减小,这时函数的图象从左到右下降.
当b0,直线与y轴交于正半轴;当b<0时,直线与y轴交于负半轴;当b=0时,直线与y轴交于坐标原点.
2.k>0,b>0时,直线经过一、二、三象限;
k>0,b<0时,直线经过一、三、四象限;
k<0,b>0时,直线经过一、二、四象限;
k<0,b<0时,直线经过二、三、四象限.
五.作业
习题14.2第5,10,11题。
六.教后反思及建议
(二)猜想
显示全部