第4讲方程和不等式(不等式).doc
文本预览下载声明
课时12.一元一次不等式(组)
【课前热身】
1.的3倍与2的差不小于5,用不等式表示为 .
2.不等式的解集是 .
3.代数式值为正数,的范围是 .
4.已知,则下列不等式一定成立的是( )
A. B. C. D.
5. 不等式组的解集为( )
A. B. C. D.无解
6.不等式组的整数解的个数为( )
A.1个 B.2个 C.3个 D.4个
【考点链接】
1.不等式的有关概念:用 连接起来的式子叫不等式;使不等式成立的 的值叫做不等式的解;一个含有 的不等式的解的 叫做不等式的解集.求一个不等式的 的过程或证明不等式无解的过程叫做解不等式.
2.不等式的基本性质:
(1)若<,则+ ;
(2)若>,>0则 (或 );
(3)若>,<0则 (或 ).
3.一元一次不等式:只含有 未知数,且未知数的次数是 且系数 的不等式,称为一元一次不等式;一元一次不等式的一般形式为 或;解一元一次不等式的一般步骤:去分母、 、移项、 、系数化为1.
4.一元一次不等式组:几个 合在一起就组成一个一元一次不等式组.
一般地,几个不等式的解集的 ,叫做由它们组成的不等式组的解集.
5.由两个一元一次不等式组成的不等式组的解集有四种情况:(已知)
的解集是,即“小小取小”;的解集是,即“大大取大”;
的解集是,即“大小小大中间找”;
的解集是空集,即“大大小小取不了”.
6.易错知识辨析:
(1)不等式的解集用数轴来表示时,注意“空心圆圈”和“实心点”的不同含义.
(2)解字母系数的不等式时要讨论字母系数的正、负情况.
如不等式(或)()的形式的解集:
当时,(或)
当时,(或)
当时,(或)
【典例精析】
例1 解不等式,并把它的解集在数轴上表示出来.
例2 解不等式组, 并将它的解集在数轴上表示出来.
x
y
0
2
例3 一次函数(是常
数,)的图象如图所示,则不等式
的解集是( )
A. B. C. D.
【中考演练】
1.不等式的解集是 .
2.关于的方程两实根之和为m,,关于y的不等于组有实数解,则k的取值范围是_________________.
3.不等式3 ( x-1 ) + 4≥2x的解集在数轴上表示为( )
4.不等式组的解集在数轴上表示出来如图所示,
则这个不等式组为( )
A. B. C. D.
5.不等式组的解集在数轴上表示为( )
1
0
2
A.
1
0
2
B.
1
0
2
C.
1
0
2
D.
6.解不等式组
7.解不等式组,并把它的解集表示在数轴上.
课时13.一元一次不等式(组)及其应用
【课前热身】
1.某商贩去菜摊买黄瓜,他上午买了斤,价格为每斤元;下午,他又买了斤,价格为每斤元.后来他以每斤元的价格卖完后,结果发现自己赔了钱,其原因是( )
A. B. C. D.
2.某电脑用户计划使用不超过530元的资金购买单价为70元的单片软件和80元的盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒,不相同的选购方式共存( )
A.4种 B.5种 C.6种 D.7种
3.已知一个矩形的相邻两边长分别是和,若它的周长小于,面积大于,则的取值范围在数轴上表示正确的是( )
4. 若方程组的解是负数,那么a的取值范围是 .
【考点链接】
1.求不等式(组)的特殊解:
不等式(组)的解往往有无数多个,但其特殊解在某些范围内是有限的,如整数解,非负整数解,求这些特殊解应先确定不等式(组)的解集,然后再找到相应答案.
2.列不等式(组)解应用题的一般步骤:
①审:审题,分析题中已知什么、求什么,明确各数量之间的关系;②找:找出能够表示应用题全部含义的一个不等关系;③设:设未知数(一般求什么,就设什么为;④列:根据这个不等关系列出需要的代数式,从而列出不等式(组);⑤解:解所列出的不等式(组),写出未知数的值或范围;⑥答:检验所求解是否符合题意,写出答案(包括单位).
3.易错知识辨析:
判断不等式是否成立,关键是分析不等号的变化,其根据是不等式的性质.
【典例精析】
例1直线与
显示全部