方程与不等式中考复习.docx
文本预览下载声明
中小学课外辅导教育
PAGE 1
PAGE 6
易达教育 电话:0551-5389570 地址:合肥市高新区长江西路香格里拉广场商务中心8楼
授课教案
辅导日期: 2013 年 3 月 2 日 辅导时间: 17:20—19:20 学员: 王玉石
辅导课程 方程与不等式课前复习授课内容教学目标:1.学会解一元二次方程、判别一元二次方程的根的个数、韦达定理
2.分析问题、能够利用方程解决实际问题
3.熟练解决不等式与不等式组并能够运用到实际问题中
教学重难点: 运用一元二次方程和不等式组解决实际问题
课时一
基础知识点:
一、方程有关概念
1、方程:含有未知数的等式叫做方程。
2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。
3、解方程:求方程的解或方判断方程无解的过程叫做解方程。
4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。
二、一元方程
1、一元一次方程
(1)一元一次方程的标准形式:ax+b=0(其中x是未知数,a、b是已知数,a≠0)
(2)一玩一次方程的最简形式:ax=b(其中x是未知数,a、b是已知数,a≠0)
(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。
(4)一元一次方程有唯一的一个解。
2、一元二次方程
(1)一元二次方程的一般形式:(其中x是未知数,a、b、c是已知数,a≠0)
(2)一元二次方程的解法: 直接开平方法、配方法、公式法、因式分解法
(3)一元二次方程解法的选择顺序是:先特殊后一般,如果没有要求,一般不用配方法。
(4)一元二次方程的根的判别式:
当Δ>0时方程有两个不相等的实数根;
当Δ=0时方程有两个相等的实数根;
当Δ 0时方程没有实数根,无解;
当Δ≥0时方程有两个实数根
(5)一元二次方程根与系数的关系:
若是一元二次方程的两个根,那么:,
(6)以两个数为根的一元二次方程(二次项系数为1)是:
三、分式方程
(1)定义:分母中含有未知数的方程叫做分式方程。
(2)分式方程的解法:
一般解法:去分母法,方程两边都乘以最简公分母。
特殊方法:换元法。
(3)检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。
四、方程组
1、方程组的解:方程组中各方程的公共解叫做方程组的解。
2、解方程组:求方程组的解或判断方程组无解的过程叫做解方程组
3、一次方程组:
(1)二元一次方程组:
一般形式:(不全为0)
解法:代入消远法和加减消元法
解的个数:有唯一的解,或无解,当两个方程相同时有无数的解。
(2)三元一次方程组:
解法:代入消元法和加减消元法
4、二元二次方程组:
(1)定义:由一个二元一次方程和一个二元二次方程组成的方程组以及由两个二元二次方程组成的方程组叫做二元二次方程组。
(2)解法:消元,转化为解一元二次方程,或者降次,转化为二元一次方程组。
考点与命题趋向分析
例题:
一、一元二次方程的解法
例1、解下列方程:
(1);(2);(3)
分析:(1)用直接开方法解;(2)用公式法;(3)用因式分解法
例2、解下列方程:
(1);(2)
二、分式方程的解法:
例3、解下列方程:
(2);(2)
分析:(1)用去分母的方法;(2)用换元法
三、根的判别式及根与系数的关系
例4、已知关于x的方程:有两个相等的实数根,求p的值。
分析:由题意可得=0,把各系数代入=0中就可求出p,但要先化为一般形式。
例5、已知a、b是方程的两个根,求下列各式的值:
(1);(2)
例6、求作一个一元二次方程,使它的两个根分别比方程的两个根小3
分析:先出求原方程的两根之和和两根之积再代入求出和的值,所求的方程也就容易写出来。
三、方程组
例7、解下列方程组:
(1) ; (2)
分析:(1)用加减消元法消x较简单;(2)应该先用加减消元法
显示全部