2015高考数学文科试题分类汇编 三角函数与解三角形详解.doc
文本预览下载声明
三角函数与解三角形
1.【2015高考福建,文6】若,且为第四象限角,则的值等于( )
A. B. C. D.
【答案】D
【解析】由,且为第四象限角,则,则
,故选D.
【考点定位】同角三角函数基本关系式.
【名师点睛】本题考查同角三角函数基本关系式,在、、三个值之间,知其中的一个可以求剩余两个,但是要注意判断角的象限,从而决定正负符号的取舍,属于基础题.
2.【2015高考重庆,文6】若,则( )
(A) (B) (C) (D)
【答案】A
【解析】,故选A.
【考点定位】正切差角公式及角的变换.用已知角和表示出来,再用正切的差角公式求解.本题属于基础题,注意运算的准确性.
3.【2015高考山东,文4】要得到函数 的图象,只需要将函数的图象( )
(A)向左平移个单位??(B)向右平移个单位
(C)向左平移个单位???(D)向右平移个单位
【答案】
【解析】因为,所以,只需要将函数的图象向右平移个单位,故选.
【考点定位】三角函数图象的变换.加或减的数据.本题属于基础题,是教科书例题的简单改造,易错点在于平移的方向记混.
4.【2015高考陕西,文6】“”是“”的( )
A充分不必要条件 B必要不充分条件 C充分必要条件 D既不充分也不必要
【答案】
【解析】,
所以或,故答案选.
【考点定位】1.恒等变换;2.命题的充分必要性.
【名师点睛】1.本题考查三角恒等变换和命题的充分必要性,采用二倍角公式展开,求出或.2.本题属于基础题,高考常考题型.
【2015高考上海,文17】已知点 的坐标为,将绕坐标原点逆时针旋转至,则点的纵坐标为( ).
A. B.
C. D.
【答案】D
【解析】设直线的倾斜角为,,则直线的倾斜角为,因为,
所以,,,即,
因为,所以,所以或(舍去),
所以点的纵坐标为.
【考点定位】三角函数的定义,和角的正切公式,两点间距离公式.
【名师点睛】设直线的倾斜角为,,则,,再利用三角函数定义、两点间的距离公式找关于、的等式求解结论.数学解题离不开计算,应仔细,保证不出错.
5.【2015高考广东,文5】设的内角,,的对边分别为,,.若,,,且,则( )
A.B.C.D.,所以,即,解得:或,因为,所以,故选B.
【考点定位】余弦定理.
【名师点晴】本题主要考查的是余弦定理,属于容易题.解题时要抓住关键条件“”, 否则很容易出现错误.本题也可以用正弦定理解,但用正弦定理求角时要注意检验有两角的情况,否则很容易出现错误.解本题需要掌握的知识点是余弦定理,即.
6.【2015高考浙江,文11】函数的最小正周期是 ,最小值是 .
【答案】
【解析】
,所以;.
【考点定位】1.三角函数的图象与性质;2.三角恒等变换.
【名师点睛】本题主要考查三角函数的图象与性质以及三角恒等变换.主要考查学生利用恒等变换化简三角函数,利用整体代换判断周期与最值的能力.本题属于容易题,主要考查学生的基本运算能力以及整体代换的运用.
7.【2015高考福建,文14】若中,,,,则_______.
【答案】
【解析】由题意得.由正弦定理得,则,
所以.
【考点定位】正弦定理.
【名师点睛】本题考查正弦定理,利用正弦定理可以求解一下两类问题:(1)已知三角形的两角和任意一边,求三角形其他两边与角;(2)已知三角形的两边和其中一边的对角,求三角形其他边与角.关键是计算准确细心,属于基础题.
8.【2015高考重庆,文13】设的内角A,B,C的对边分别为,且,则c=________.
【答案】4
【解析】由及正弦定理知:,又因为,所以,
由余弦定理得:,所以;故填:4.
【考点定位】正弦定理与余弦定理.转化为3a=2b结合已知即可求得b的值,再用余弦定理即可求解.本题属于基础题,注意运算的准确性及最后结果还需开方.
9.【2015高考陕西,文14】如图,某港口一天6时到18时的谁深变化曲线近似满足函数y=3sin(x+Φ)+k,据此函数可知,这段时间水深(单位:m)的最大值为____________.
【答案】8
【解析】由图像得,当时,求得,
当时,,故答案为8.
【考点定位】三角函数的图像和性质.
【名师点睛】1.本题考查三角函数的图像和性质,在三角函数的求最值中,我们经常使用的是整理法,从图像中知此题时,取得最小值,继而求得的值,当时,取得最大值.2.本题属于中档题,注意运算的准确性.
【
显示全部