过程控制之液位量串级控制系统.doc
文本预览下载声明
过程控制之液位流量串级控制系统
1.1控制系统在实际应用中的重要意义
单回路控制系统是过程控制中结构最简单的一种形式,它只用一个调节器,调节器也只有一个输入信号,从系统方框图看,只有一个闭环。在大多数情况下,这种简单系统已经能够满足工艺生产的要求。但在复杂的控制系统中,则需在单回路的基础上,采取其它措施,组成复杂控制系统,而串级控制系统就是其中一种改善和提高控制品质的极为有效的控制系统。
液位和流量是工业生产过程中最常用的两个参数,对液位和流量进行控制的装置在工业生产中应用的十分普遍。液位的时间常数T一般很大,因此有很大的容积迟延,如果用单回路控制系统来控制,可能无法达到较好的控制质量。而串级控制系统则可以起到十分明显的提高控制质量的效果,因此往往采用串级控制系统对液位进行控制。
1.2 系统结构设计
过程控制系统由四大部分组成,分别为控制器、调节器、被控对象、测量变送。本次为流量回路控制,即为闭环控制系统,结构组成如下图1.1所示。
图1.1 液位单回路控制系统框图
当系统启动后,水泵开始抽水,通过管道分别将水送到上水箱和下水箱,由HB返回信号,是否还需要放水到下水箱。其过程控制系统图如图1.2所示。
图1.2 控制系统框图
1.3控制系统的总体方框图及工作过程
图1.3控制系统框图
单容水箱如图1.2所示,Qi为入口流量,由调节阀开度μ加以控制,出口流量则由电磁阀控制产生干扰。被调量为水箱中的水位H,它反映水的流入与流出量之间的平衡关系。现在分析水位在电磁阀开度扰动下的动态特性。显然,在任何时刻水位的变化均满足下述物料平衡方程:
(1.1)
其中 (1.2)
(1.3)
F为水箱的横截面积;是决定于阀门特性的系数,可以假定它是常数;是与电磁阀开度有关的系数,在固定不变的开度下,k可视为常数。
液位对象的传递函数:
2.1 控制规律的比较与选择
2.1.1 常见控制规律的类型及优缺点比较
PID控制的各种常见的控制规律如下:
一、比例调节(P调节)
在P调节中,调节器的输出信号与偏差信号成比例,即
(2.1)
式中Kc称为比例增益(视情况可设置为正或负), 为调节器的输出,是对调节器起始值的增量,的大小可以通过调整调节器的工作点加以改变。
在过程控制中习惯用比例增益的倒数表示调节器输入与输出之间的比例关系:
(2.2)
其中称为比例带。
比例调节的显著特点就是有差调节。
比例调节的余差随着比例带的加大而加大。从这一方面考虑,人们希望尽量减小比例带。然而,减小比例带就等于加大调节系统的开环增益,其后果是导致系统激烈振荡甚至不稳定。稳定性是任何闭环控制系统的首要要求,比例带的设置必须保证系统具有一定的稳定裕度。此时,如果余差过大,则需通过其它的途径解决。
很大意味着调节阀的动作幅度很小,因此被调量的变化比较平稳,甚至可以没有超调,但余差很大,调节时间也很长。减小就加大了调节阀的动作幅度,引起被调量来回波动,但系统仍可能是稳定的,余差相应减小。具有一个临界值,此时系统处于稳定边界的情况,进一步减小系统就不稳定了。
二、积分调节(I调节)的特点
在I调节中,调节器的输出信号的变化速度(t)/t与偏差信号e成正比,即:
(2.3)
或 (2.4)
式中KI称为积分速度,可视情况取正值或负值。上式表明,调节器的输出与偏差信号的积分成正比。
I调节的特点是无差调节,与P调节的有差调节形成鲜明对比。式(2.3)表明,只有当被调量偏差e为零时,I调节器的输出才会保持不变。然而与此同时,调节器的输出却可以停在任何数值。这意味着被控对象在负荷扰动的调节过程结束后,被调量没有余差,而调节阀则可以停在新的负荷所要求的开度上。
I调节的另一特点是它的稳定作用比P调节差。例如,根据奈氏稳定判据可知,对于非自衡的被控对象采用P调节时,只要加大比例带总可以使系统稳定(除非被控对象含有一个以上的积分环节);如果采用I调节则不可能得到稳定的系统。
对
显示全部