重庆大学微型计算机控制第3章第4次.ppt
文本预览下载声明
* 当运算结果小于计算机所能表示数的精度时,计算机就作为“零”将此数丢掉。根据式(3-55),增量型PID控制算式中的积分项输出为: (3-62) 当控制系统采样周期T 较小,积分时间TI 较大,容易出现 小于计算机所能表示数的精度而丢失,这时,积分作用就消失了,称为积分不灵敏区。这会造成控制系统出现残差。 3.消除积分不灵敏区PID控制算法 (3-55) 为了减小积分不灵敏区的影响,可以采取以下措施: (1)增加A/D转换位数,提高运算精度。 (2)当积分项连续几次出现小于输出精度ε的情况时,不要把它们作为“零”舍掉,而是累加起来,当累加值大于输出精度时,输出控制量,再把累加单元清零。即 其程序流程如图3-20所示。 图3-20 消除积分不灵敏区 PID控制算法的程序流程图 例3-2 某温度控制系统采用PID控制,温度量程为0~1275℃,A/D转换器的分辨率为8位,并采用8位字长定点运算。已知 ,试计算当温差达到多少℃时,才会有积分作用? 而0至1275℃对应的A/D转换输出的数字量为0~255,温差 对应的偏差数字为 令上式大于10,解得 。可见,只有当温差大于50℃时,才会有 ,PID控制器才有积分作用。 解:因为当计算机运算的 时,计算机就作为“零”将此数丢掉,控制器就没有积分作用。将 代入式(3-62)计算得 ●微分作用的优点:PID控制中,微分环节能针对偏差的变化趋势,在偏差值变得太大之前,为系统中引入一个有效的早期修正信号,加快系统的动作速度,减小调节时间,扩大稳定域,改善系统动态性能,近似地补偿被控对象的一个极点。一般不会轻易去掉微分作用。 4.不完全微分PID控制算法 标准PID控制中的微分环节对具有高频扰动的生产过程过于敏感,很容易引起调节过程的振荡,导致调节品质下降。 ●微分作用的缺点: 在微型计算机控制系统中,计算机输出控制每个回路的时间很短暂,而驱动执行机构动作需要一定的时间,当被控量突然变化,此时偏差的变化率很大,微分输出就很大,如果在一个采样周期内执行机构不能达到预期的位置,输出将会失真,这就产生了所谓的微分失控(饱和)。 为了克服这些缺点,同时又要保留微分的作用,可以在标准PID控制器中微分环节的输出串联一阶惯性环节,对PID控制中的微分信号进行滤波,消除高频干扰,即组成了不完全微分PID控制器,以抑制高频干扰,显著改善其性能。 在模拟PID调节器中,由于受到硬件装置的限制,实际上也是用一阶惯性环节加微分作用代替理想微分的。这种方法称为微分滤波PID控制算法,又称为不完全微分PID控制算法。 一阶惯性环节Df(s)的传递函数为: (3-63) 则 得: (3-64) 对上式离散化,可得不完全微分PID位置式控制算法: (3-65) 式中: 不完全微分PID控制器的增量式控制算法为: (3-66) 式中: 在单位阶跃信号作用下,完全微分PID和不完全微分PID的控制作用有很大差异,如图3-22所示。 图3-22 不完全微分与标准PID控制效果对比图 (2)不完全微分数字PID不但能抑制高频干扰,而且克服了标准数字PID控制器的上述缺点,微分作用在第一个采样周期里的输出幅度小得多。并且能在后续各个采样周期按照偏差变化的趋势均匀地起作用,信号变化比较缓慢,故不易引起振荡,其延续时间的长短与KD的选取有关,KD越大延续时间越短,KD越小延续时间越长,一般KD取10~30左右。这样既起到了微分的作用,又改善了系统的性能。 (3)从改善系统动态性能的角度看,不完全微分PID控制器比完全微分PID控制器效果好,其程序流程图如图3-23所示。 (1)标准数字PID控制器中的微分作用只在第一个采样周期产生一个幅度很大的输出信号,不能按照偏差变化的趋势在整个调节过程中均匀地起作用,这样变化剧烈的信号,容易引起系统振荡。 微分算法的另一种改进形式是微分先行PID控制方法,如图3-24所示。 图3-24 微分先行PID控制原理框图 它由不完全微分PID控制器变换而来。与标准PID控制的不同之处在于,它只对被测量y(t)微分,不对给定值微分,这种先行微分控制可以减缓给定值频繁升降时给系统带来的冲击,防止超调量过大,使系统不会因为调节阀动作剧烈而产生振荡,明显地改善系统的动态性能。 5.微分先行PID控制算法 在某些微型计算机控制系统中,为了避免控制动作过于频繁
显示全部