2006年普通高等学校招生全国统一考试(江西卷.doc
文本预览下载声明
)
理科数学
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至2页。第Ⅱ卷3至4页。全卷满分150分,考试时间120分钟。
考生注意事项:
1.答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。
2.答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.答第Ⅱ卷时,必须用0.5毫米墨水签字笔在答题卡上书写。在试题卷上作答无效。
4.考试结束,监考人员将试题卷和答题卡一并收回。
参考公式:
如果时间A、B互斥,那么
如果时间A、B相互独立,那么
如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概率
球的表面积公式,其中R表示球的半径
球的体积公式,其中R表示球的半径
第Ⅰ卷(选择题 共60分)
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合M={x|},N={y|y=3x2+1,x(R},则M(N=( )
A.( B. {x|x(1} C.{x|x(1} D. {x| x(1或x(0}
2、已知复数z满足(+3i)z=3i,则z=( )
A. B. C. D.
3、若a(0,b(0,则不等式-b((a等价于( )
A.(x(0或0(x( B.-(x( C.x(-或x( D.x(或x(
4、设O为坐标原点,F为抛物线y2=4x的焦点,A是抛物线上一点,若=-4
则点A的坐标是( )
A.(2,(2) B. (1,(2) C.(1,2)D.(2,2)
5、对于R上可导的任意函数f(x),若满足(x-1)(0,则必有( )
f(0)+f(2)(2f(1) B. f(0)+f(2)(2f(1)
f(0)+f(2)(2f(1) C. f(0)+f(2)(2f(1)
6、若不等式x2+ax+1(0对于一切x((0,〕成立,则a的取值范围是( )
A.0 B. –2 C.- D.-3
7、已知等差数列{an}的前n项和为Sn,若,且A、B、C三点共线(该直线不过原点O),则S200=( )
A.100 B. 101 C.200 D.201
8、在(x-)2006 的二项展开式中,含x的奇次幂的项之和为S,当x=时,S等于( )
A.23008 B.-23008 C.23009 D.-23009
9、P是双曲线的右支上一点,M、N分别是圆(x+5)2+y2=4和(x-5)2+y2=1上的点,则|PM|-|PN|的最大值为( )
A. 6 B.7 C.8 D.9
10、将7个人(含甲、乙)分成三个组,一组3人,另两组2 人,不同的分组数为a,甲、乙分到同一组的概率为p,则a、p的值分别为( )
a=105 p= B.a=105 p= C.a=210 p= D.a=210 p=
11、如图,在四面体ABCD中,截面AEF经过四面体的内切球(与四个面都相切的球)球心O,且与BC,DC分别截于E、F,如果截面将四面体分成体积相等的两部分,设四棱锥A-BEFD与三棱锥A-EFC的表面积分别是S1,S2,则必有( )
S1(S2
S1(S2
S1=S2
S1,S2的大小关系不能确定
12、某地一年的气温Q(t)(单位:oc)与时间t(月份)之间的关系如图(1)所示,已知该年的平均气温为10oc,令G(t)表示时间段〔0,t〕的平均气温,G(t)与t之间的函数关系用下列图象表示,则正确的应该是( )
理科数学
第Ⅱ卷(非选择题 共90分)
注意事项:
请用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效。
二、填空题:本大题共4小题,每小题4分,共16分,把答案填写在答题卡的相应位置。
13、数列{}的前n项和为Sn,则Sn=______________
14、设f(x)=log3(x+6)的反函数为f-1(x),若〔f-1(m)+6〕〔f-1(n)+6〕=27
则f(m+n)=___________________
15、如图,在直三棱柱ABC-A1B1C1中,底面为直角三角形,(ACB=90(,AC=6,BC=CC1=,P是BC1上一动点,则CP+PA1的最小值是___________
16、已知圆M:(x+cos()2+(y-sin()2=1,
直线l:y=kx,下面四个命题:
对任意实数k与(,直线l和圆M相切;
对任意实数k与(,直线l和圆M有公共点;
对任意实数(,必存在实数k,使得直线
显示全部