(2.4.2 抛物线的简单几何性质.doc
文本预览下载声明
2.4.2 抛物线的简单几何性质
课时目标 1.了解抛物线的几何图形,知道抛物线的简单几何性质,学会利用抛物线方程研究抛物线的几何性质的方法.2.了解抛物线的简单应用.
1.抛物线的简单几何性质
设抛物线的标准方程为y2=2px(p0)
(1)范围:抛物线上的点(x,y)的横坐标x的取值范围是________,抛物线在y轴的______侧,当x的值增大时,|y|也________,抛物线向右上方和右下方无限延伸.
(2)对称性:抛物线关于________对称,抛物线的对称轴叫做________________.
(3)顶点:抛物线和它的轴的交点叫做抛物线的________.抛物线的顶点为____________.
(4)离心率:抛物线上的点到焦点的距离和它到准线的距离的比,叫做抛物线的__________,用e表示,其值为______.
(5)抛物线的焦点到其准线的距离为______,这就是p的几何意义,顶点到准线的距离为,焦点到顶点的距离为________.
2.直线与抛物线的位置关系
直线y=kx+b与抛物线y2=2px(p0)的交点个数决定于关于x的方程________________________的解的个数.当k≠0时,若Δ0,则直线与抛物线有______个不同的公共点;当Δ=0时,直线与抛物线有______个公共点;当Δ0时,直线与抛物线________公共点.当k=0时,直线与抛物线的轴__________,此时直线与抛物线有______个公共点.
3.抛物线的焦点弦
设抛物线y2=2px(p0),AB为过焦点的一条弦,A(x1,y1),B(x2,y2),AB的中点M(x0,y0),则有以下结论.
(1)以AB为直径的圆与准线________.
(2)|AB|=________(焦点弦长与中点坐标的关系).
(3)|AB|=x1+x2+______.
(4)A、B两点的横坐标之积、纵坐标之积为定值,即x1x2=________,y1y2=________.
一、选择题
1.顶点在原点,对称轴为坐标轴的抛物线过点(-2,3),它的方程是( )
A.x2=-y或y2=x
B.y2=-x或x2=y
C.y2=-x
D.x2=y
2.若抛物线y2=2px (p0)上三个点的纵坐标的平方成等差数列,那么这三个点到抛物线焦点F的距离的关系是( )
A.成等差数列
B.既成等差数列又成等比数列
C.成等比数列
D.既不成等比数列也不成等差数列
3.已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与点P到该抛物线准线的距离之和的最小值为( )
A. B.3 C. D.
4.设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为( )
A.y2=±4x B.y2=±8x
C.y2=4x D.y2=8x
5.设直线l1:y=2x,直线l2经过点P(2,1),抛物线C:y2=4x,已知l1、l2与C共有三个交点,则满足条件的直线l2的条数为( )
A.1 B.2 C.3 D.4
6.过抛物线y2=ax (a0)的焦点F作一直线交抛物线于P、Q两点,若PF与FQ的长分别为p、q,则+等于( )
A.2a B. C.4a D.
题 号 1 2 3 4 5 6 答 案 二、填空题
7.已知抛物线C的顶点为坐标原点,焦点在x轴上,直线y=x与抛物线C交于A,B两点,若P(2,2)为AB的中点,则抛物线C的方程为________.
8.已知F是抛物线C:y2=4x的焦点,A、B是抛物线C上的两个点,线段AB的中点为M(2,2),则△ABF的面积等于________.
9.过抛物线x2=2py (p0)的焦点F作倾斜角为30°的直线,与抛物线分别交于A、B两点(点A在y轴的左侧),则=________.
三、解答题
10.设抛物线y=mx2 (m≠0)的准线与直线y=1的距离为3,求抛物线的标准方程.
11.过点Q(4,1)作抛物线y2=8x的弦AB,恰被Q所平分,求AB所在的直线方程.
能力提升
12.设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足,如果直线AF的斜率为-,那么|PF|等于( )
A.4 B.8 C.8 D.16
13.
已知直线l经过抛物线y2=4x的焦点F,且与抛物线相交于A、B两点.
(1)若|AF|=4,求点A的坐标;
(2)求线段AB的长的最小值.
1.
显示全部