高中数学立体几何知识点与解题方法技巧.doc
文本预览下载声明
高中数学立体几何知识点与解题方法技巧
PAGE 1
PAGE 1
立体几何知识点 例题讲解
一、知识点
一常用结论
1.证明直线与直线的平行的思考途径:(1)转化为判定共面二直线无交点;(2)转化为二直线同与第三条直线平行;(3)转化为线面平行;(4)转化为线面垂直;(5)转化为面面平行.
2.证明直线与平面的平行的思考途径:(1)转化为直线与平面无公共点;(2)转化为线线平行;(3)转化为面面平行.
3.证明平面与平面平行的思考途径:(1)转化为判定二平面无公共点;(2)转化为线面平行;(3)转化为线面垂直.
4.证明直线与直线的垂直的思考途径:(1)转化为相交垂直;(2)转化为线面垂直;(3)转化为线与另一线的射影垂直;(4)转化为线与形成射影的斜线垂直.
5.证明直线与平面垂直的思考途径:(1)转化为该直线与平面内任一直线垂直;(2)转化为该直线与平面内相交二直线垂直;(3)转化为该直线与平面的一条垂线平行;(4)转化为该直线垂直于另一个平行平面;(5)转化为该直线与两个垂直平面的交线垂直.
6.证明平面与平面的垂直的思考途径:(1)转化为判断二面角是直二面角;(2)转化为线面垂直.
7.夹角公式 :设a=,b=,则cos〈a,b〉=.
18. 面积射影定理 .(平面多边形及其射影的面积分别是、,它们所在平面所成锐二面角的).
19. 球的组合体(1)球与长方体的组合体: 长方体的外接球的直径是长方体的体对角线长.(2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长.(3) 球与正四面体的组合体: 棱长为的正四面体的内切球的半径为,外接球的半径为.
20.?求点到面的距离的常规方法是什么?(直接法、体积法)
21.?求多面体体积的常规方法是什么?(割补法、等积变换法)
〈二〉提示:
1.在用反三角函数表示直线的倾斜角、两条异面直线所成的角等时,你是否注意到它们各自的取值范围及义?
① 异面直线所成的角、直线与平面所成的角、二面角的取值范围依次.
② 直线的倾斜角、到的角、与的夹角的取值范围依次是.
③ 反正弦、反余弦、反正切函数的取值范围分别是.
〈三〉解题思路:
1、平行垂直的证明主要利用线面关系的转化:
线面平行的判定:
线面平行的性质:
三垂线定理(及逆定理):
线面垂直:
面面垂直:
2、三类角的定义及求法
(1)异面直线所成的角θ,0°<θ≤90°
(2)直线与平面所成的角θ,0°≤θ≤90°
(三垂线定理法:A∈α作或证AB⊥β于B,作BO⊥棱于O,连AO,则AO⊥棱l,∴∠AOB为所求。)
三类角的求法:
①找出或作出有关的角。
②证明其符合定义,并指出所求作的角。
③计算大小(解直角三角形,或用余弦定理)。
二、题型与方法
【考点透视】
不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成。
求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。
【例题解析】
考点1 点到平面的距离
求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用.
ABCD例1如图,正三棱柱的所有棱长都为,为中点.
A
B
C
D
(Ⅰ)求证:平面;
(Ⅱ)求二面角的大小;
(Ⅲ)求点到平面的距离.
考查目的:本小题主要考查直线与平面的位置关系,二面角的
大小,点到平面的距离等知识,考查空间想象能力、逻辑思维
能力和运算能力.
解答过程:解法一:(Ⅰ)取中点,连结.
ABCDO
A
B
C
D
O
F
正三棱柱中,平面平面,
平面.
连结,在正方形中,分别为
的中点, , .
在正方形中,, 平面.
(Ⅱ)设与交于点,在平面中,作于,连结,由(Ⅰ)得平面.
, 为二面角的平面角.
在中,由等面积法可求得,
又, .
所以二面角的大小为.
(Ⅲ)中,,.
在正三棱柱中,到平面的距离为.
设点到平面的距离为.
由,得,
.
点到平面的距离为.
解法二:(Ⅰ)取中点,连结.
为正三角形,.
在正三棱柱中,平面平面,
平面.
xzABCDOFy取中点,以为原点,,,的方向为轴的正方向建立空间直角坐标系,则,,,,,
x
z
A
B
C
D
O
F
y
,,.
显示全部