文档详情

七年级数学上册有理数混合运算习题与教(学)案.doc

发布:2018-10-24约5.19万字共102页下载文档
文本预览下载声明
WORD文档下载可编辑 PAGE 专业资料整理分享 有理数的混合运算 (一)填空 5.-7-9+(-13)=______. 9.-|-0.2|+[0.6-(0.8-5.4)]=______. 12.9.53-8-(2-|-11.64+1.53-1.36|)=______. 13.73.17-(812.03-|219.83+518|)=______. 36.38×(-7)+5[(-2)3(-32)-(-22)]-38×339÷(-3)38=______. 48.(-2)×{(-3)×[(-5)+2×(0.3-0.3)÷83-3]+4}=______. 112.413-74-(-5+26). 116.-84-(16-3)+7. 118.-0.182+3.105-(0.318-6.065). 119.-2.9+[1.7-(7+3.7-2.1)]. 121.34.23-[194.6-(5.77-5.4)]. 125.23.6+[3.9-(17.8-4.8+15.4)]. 134.(-3)2÷2.5. 135.(-2.52)×(-4). 136.(-32)÷(-2)2. 173.(-1)2×5+(-1)×52-12×5+(-1×5)2. 174.(-2)(-3)(-36)+(-1)20×63. 178.(-32)÷(3×2)×(-3-2). 180.3×(-2)2+(-2×3)2+(-2+3)2. 188.2+42×(-8)×16÷32. 190.[5.78+3.51-(0.7)2]÷(0.2)3×11. 191.(1.25)4÷(0.125)4×0.0036-(0.6)2. 194.(-42×26+132×2)÷(-3)7×(-3)5. 195.(3-9)4×23×(-0.125)2. 201.741×[(-30)2-(-402)]3÷(1250)2. 211.[(-5)3+3.4×2-2×4+53]2. 213.(24-5.1×3-3×5+33)2. 234.(-5)×(-3)×(-4)2+(-2)3×(-8)×(-3)-(-12)×3÷24. 240.-18-23×[(-4)3÷(-43)+0.2×8+(-3)2÷(-32)]. (四)用符号“>”,“<”,“≥”,“≤”,“=”之一填空 241.当两个数和的绝对值______这两个数差的绝对值时,这两个数同号. 242.一个正数与一个负数差的绝对值______这两个数绝对值的和. 243.一个正数与一个负数和的绝对值______这两个数绝对值的差. 244.一个正数与一个负数差的绝对值______这两个数绝对值的差. 245.一个正数与一个负数和的绝对值______这两个数绝对值的和. 246.当两个数和的绝对值______这两个数差的绝对值时,这两个数异号. 247.当两数和的绝对值______这两个数差的绝对值时,这两个数至少有一个是零. 248.当两数和的绝对值______这两个数的绝对值之和时,这两个数可以是任意的有理数. 249.当两数差的绝对值______这两个数的绝对值之和时,这两个数可以是任意的有理数. 250.当两个数和的绝对值______这两个数绝对值的差时,这两个数可以是任意的有理数. 251.当两个数差的绝对值______这两个数绝对值的差时,这两个数可以是任意的有理数. (五)回答问题 252.欲使两个数的绝对值的和等于这两个数的和的绝对值,这两个数必须是怎样的数? 253.欲使两个数和的绝对值不小于这两个数的差的绝对值,这两个数必须是怎样的数? 254.欲使两数和的绝对值不大于这两数差的绝对值,这两个数必须是怎样的数? 255.欲使两数和的绝对值不小于这两个数的绝对值的和,这两个数必须是怎样的数? (六)应用题 256.一个盛有水的圆柱形水桶,其底面半径为1.6分米①.现将一个半径为1.2分米的铁球沉没在桶内水面下,问桶内水面升高多少分米?(列综合算式计算,球的体积公式为,其中V表示体积,R表示球的半径) 257.一个盛有水的长方体状容器,它的底面是边长为2.4分米的正方形,现将一个半径是1.2分米的铁球放在容器内,正好铁球体积的1/3在水面下,问放入铁球后,水面升高了多少分米?(列综合算式计算,球的体积公式为, 其中V表示体积,R表示球的半径,π取3.14。 258.将25个底面半径为2.4厘米、高是50厘米的圆柱形铁熔化后浇铸成长方体,如果长方体底面是正方形,边长4厘米,长方体高9厘米,问不计损耗,共可浇铸多少个这样的长方体?(列综合算式计算,π取3.14.)259.某工厂按每年40%的增长率组织生产,如果第四个生产年度产量为30870件,问第一个生产年度的产量是多少件?
显示全部
相似文档