数学人教版八年级上册第13章-轴对称单元复习课 教学设计.pdf
第十三章轴对称复习教学设计
一、复习目标
1、重新认识轴对称、轴对称图形,探索轴对称的基本性质,理解对应点连线被对称轴垂直平分的性质。
2、按照要求作出简单图形经过一次或两次轴对称后的图形,能应用轴对称进行简单的图案设计。
3、理解线段的垂直平分线的概念并掌握其性质;理解等腰三角形、等边三角形的有关概念,并掌握它们
的性质及判定方法。
二、自主复习,盘点知识
(一)基本概念
1.轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做,
这条直线就叫做。折叠后重合的点是对应点,叫做。
2.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这
条直线,这条直线叫做,折叠后重合的点是对应点,叫做。(说明:两个图
形关于某条直线对称也叫两个图形成轴对称)。
3.线段的垂直平分线经过线段点并且这条线段的直线,叫做这条线段的垂直平分线。
4.等腰三角形有的三角形,叫做等腰三角形。相等的两条边叫做,另一条边叫做,
两腰所夹的角叫做,底边与腰的夹角叫做。
5.等边三角形三条边都的三角形叫做等边三角形。
(二)主要性质
1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的。或者说轴对
称图形的对称轴,是任何一对对应点所连线段的。
2.线段垂直平分钱的性质
线段垂直平分线上的点与这条线段两个端点的距离。
3.通过画出坐标系上的两点观察得出:
(1)点P(x,y)关于x轴对称的点的坐标为P′(,)。
(2)点P(x,y)关于y轴对称的点的坐标为P″(,)。
4.等腰三角形的性质
(1)等腰三角形的两个底角(简称“等边对等角”)。
(2)等腰三角形的顶角、底边上的、底边上的相互重合。
(3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它
的。
(4)等腰三角形两腰上的高、中线分别,两底角的平分线也。
5.等边三角形的性质
(1)等边三角形的三个内角都,并且每一个角都等于。
(2)等边三角形是轴对称图形,共有条对称轴。
(3)等边三角形每边上的、和该边所对内角的互相重合。
6.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的。
(三)有关判定
1.与一条线段两个端点距离的点,在这条线段的垂直平分线上。
2.如果一个三角形有两个角,那么这两个角所对的边也(简写成“等角对等边”)。
3.三个角都相等的是等边三角形。
4.有一个角是60°的是等边三角形。
三、基础训练
1.下列各时刻是轴对称图形的为().
A、B、C、D、
2.小明从镜子里看到镜子对面电子钟的像如图所示,实际时间是().
A、21:10B、10:21C、10:51D、12:01
3.如图是屋架设计图的一部分,其中∠A=30°,点D是斜梁AB的中点,BC、DE垂直于横