文档详情

高中数学情境教学案例.doc

发布:2016-12-28约7.85千字共50页下载文档
文本预览下载声明
高中数学情境教学案例 篇一:高中数学情境教学案例简析 高中数学情境教学案例简析 永州一中蒋雄伟 情境教学,即构建一个以情境为基础,学生在学习中成为提出问题和解决问题的主体,使教学过程成为学生主动获取知识、发展能力、体验数学的过程。“正弦定理”是全日制普通高级中学教科书(试验修订本)数学第一册(下)的教学内容之一,既是初中“解直角三角形”内容的直接延伸,也是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。 本次课的主要任务是引入并证明正弦定理,我们希望通过本课题探索情境教学在高中数学教学中的应用方法和效果。 一、教学设计 1、创设一个现实问题情境作为提出问题的背景; 2、启发、引导学生提出自己关心的现实问题,逐步将现实问题转化、抽象成过渡性数学问题,解决过渡性问题时需要使用正弦定理,借此引发学生的认知冲突,揭示解斜三角形的必要性,并使学生产生进一步探索解决问题的动机。然后引导学生抓住问题的数学实质,将过渡性问题引伸成一般的数学问题:已知三角形的两条边和一边的对角,求另一边的对角及第三边。解决这两个问题需要先回答目标问题:在三角形中,两边与它们的对角之间有怎样的关系? 3、为了解决提出的目标问题,引导学生回到他们所熟悉的直角三角形中,得出目标问题在直角三角形中的解,从而形成猜想,然后引导学生对猜想进行验证。 二、教学过程 1、设置情境 利用投影展示:如图1,一条河的两岸平行,河宽d=1km,因上游突发洪水,在洪峰到来之前,急需将码头A处囤积的重要物资及人员用船转运到正对岸的码头B处或其下游1 km的码头C处。已知船在静水中的速度vl∣= 5 km∕h,水流速度v2∣=3 km∕h。 图1 2、提出问题 师:为了确定转运方案,请同学们设身处地地考虑一下有关的问题,将各自的问题经小组(前后4人为一小组)汇总整理后交给我。 待各小组将题纸交给老师后,老师筛选几张有代表性的题纸通过投影向全班展示,经大家归纳整理后得到如下的5个问题: (l)船应开往B处还是C处? (2)船从A开到B、C分别需要多少时间? (3)船从A到B、C的距离分别是多少? (4)船从A到B、C时的速度大小分别是多少? (5)船应向什么方向开,才能保证沿直线到达B、C? 师:大家讨论一下,应该怎样解决上述问题? 大家经过讨论达成如下共识:要回答问题(l),需要解决问题(2),要解决问题(2),需要先解决问题(3)和(4),问题(3)用直角三角形知识可解,所以重点是解决问题(4),问题(4)与问题(5)是两个相关问题,因此,解决上述问题的关键是解决问题(4)和(5)。 师:请同学们根据平行四边形法则,先在练习本上做出与问题对应的示意图,明确已知什么,要求什么,怎样求解。 生:船从A开往B的情况如图2,根据平行四边形的性质及解直角三角形的知识,可求得船在河水中的速度大小v∣及vl与v2的夹角θ: 生:船从A开往C的情况如图3,AD∣=∣v1∣= 5,DE∣=∣AF∣=∣v2∣=3,易求得AED = ∠EAF = 450,还需求θ及v。我不知道怎样解这两个问题,因为以前从未解过类似的问题。 B C B C D E D E v1 θ v v1 θ v A v2 F A v2 F 图2 图3 师:请大家想一下,这两个问题的数学实质是什么? 部分学生:在三角形中,已知两边和其中一边的对角,求另一边的对角和第三边。 师:请大家讨论一下,如何解决这两个问题? 生:在已知条件下,若能知道三角形中两条边与其对角这4个元素之间的数量关系,则可以解决上述问题,求出另一边的对角。 生:如果另一边的对角已经求出,那么第三个角也能够求出。只要能知道三角形中两条边与其对角这4个元素的数量关系,则第三边也可求出。 生:在已知条件下,如果能知道三角形中三条边和一个角这4个元素之间的数量关系,也能求出第三边和另一边的对角。 师:同学们的设想很好,只要能知道三角形中两边与它们的对角间的数量关系,或者三条边与一个角间的数量关系,则两个问题都能够顺利解决。下面我们先来解答问题:三角形中,任意两边与其对角之间有怎样的数量关系? 3、解决问题 师:请同学们想一想,我们以前遇到这种一般问题时,是怎样处理的? 众学生:先从特殊事例入手,寻求答案或发现解法。直角三角形是三角形的特例,可以先在直角三角形中试探一下。 师:请各小组研究在Rt△ABC中,任意两边及其对角这4个元素间有什么关系? 多数小组很快得出结论:a/sinA = b/sinB = c/sinC。 师:a/s
显示全部
相似文档