文档详情

09高考圆锥曲线(五)4.doc

发布:2017-07-20约2.46千字共9页下载文档
文本预览下载声明
09高考圆锥曲线(五) 一.选择题 1.(2009宁夏海南卷文)已知圆:+=1,圆与圆关于直线对称,则圆的方程为 (A)+=1 (B)+=1 (C)+=1 (D)+=1 2.(2009四川卷理)若⊙与⊙相交于A、BA处的切线互相垂直,则线段AB的长度是 3.(2009天津卷理)若圆与圆(a0)的公共弦的长为,则___________ 。 4.(2009湖北卷文)过原点O作圆x2+y2-6x-8y+20=0的两条切线,设切点分别为P、Q,则线段PQ的长为 。 5.(2009重庆卷理)已知双曲线的左、右焦点分别为,若双曲线上存在一点使,则该双曲线的离心率的取值范围是 . 6.(2009北京文)椭圆的焦点为,点P在椭圆上,若,则 ;的大小为 . 7.(2009江苏卷)如图,在平面直角坐标系中,为椭圆的四个顶点,为其右焦点,直线与直线相交于点T,线段与椭圆的交点恰为线段的中点,则该椭圆的离心率为 . 8.(2009全国卷Ⅱ文)已知圆O:和点A(1,2),则过A且与圆O相切的直线与两坐标轴围成的三角形的面积等于 C的中心在原点,焦点在轴上,以两个焦点和短轴的两个端点 为顶点的四边形是一个面积为8的正方形(记为Q). (Ⅰ)求椭圆C的方程; (Ⅱ)设点P是椭圆C的轴的交点,过点P的直线与椭圆C相交于M,N两点,当线段MN的中点落在正方形Q内(包括边界)时,求直线的斜率的取值范围。 2.(2009福建卷理)(本小题满分13分) 已知A,B 分别为曲线C: +=1(y0,a0)与x轴 的左、右两个交点,直线过点B,且与轴垂直,S为上 异于点B的一点,连结AS交曲线C于点T. (1)若曲线C为半圆,点T为圆弧的三等分点,试求出点S的坐标; (II)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在,使得O,M,S三点共线?若存在,求出a的值,若不存在,请说明理由。 3.(2009辽宁卷理)(本小题满分12分) 已知,椭圆C过点A,两个焦点为(-1,0),(1,0)。 求椭圆C的方程; E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。 4.(2009宁夏海南卷理)(本小题满分12分) 已知椭圆C的中心为直角坐标系xOy的原点,焦点在s轴上,它的一个顶点到两个焦点的距离分别是7和1. (Ⅰ)求椭圆C的方程; (Ⅱ)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的点,=λ,求点M的轨迹方程,并说明轨迹是什么曲线。 【答案】B 3.4.【答案】4 5.6.【答案】 7. 8. 答案: 1.解: (Ⅰ)依题意,设椭圆C的方程为焦距为, 由题设条件知, 所以 故椭圆C的方程为 . (Ⅱ)椭圆C的左准线方程为所以点P的坐标, 显然直线的斜率存在,所以直线的方程为。 如图,设点M,N线段MN的中点为G, 由得. ……① 由解得. ……② 因为是方程①的两根,所以,于是 =, . 因为,所以点G不可能在轴的右边, 又直线,方程分别为 所以点在正方形内(包括边界)的充要条件为 即 亦即 解得,此时②也成立. 21世纪教育网 故直线斜率的取值范围是 2. 19.【解析】 解法一: (Ⅰ)当曲线C为半圆时,如图,由点T为圆弧的三等分点得∠BOT=60°或120°. (1)当∠BOT=60°时, ∠SAE=30°. 又AB=2,故在△SAE中,有 (2)当∠BOT=120°时,同理可求得点S的坐标为,综上, (Ⅱ)假设存在,使得O,M,S三点共线. 由于点M在以SB为直线的圆上,故. 显然,直线AS的斜率k存在且k0,可设直线AS的方程为. 由 设点 故,从而. 亦即 由得 由,可得即 经检验,当时,O,M,S三点共线. 故存在,使得O,M,S三点共线. 解法二: (Ⅰ)同解法一. (Ⅱ)假设存在a,使得O,M,S三点共线. 由于点M在以SO为直径的圆上,故. 显然,直线AS的斜率k存在且K0,可设直线AS的方程为 由 设点,则有 故 由所直线SM的方程为 O,S,M三点共线当且仅当O在直线SM上,即. 故存在,使得O,M,S三点共线. 3.(20)解: (Ⅰ)由题
显示全部
相似文档