文档详情

浙江省绍兴一中2013-2014学年高二数学上学期期中试题 理 新人教A版.doc

发布:2018-10-06约5.64千字共11页下载文档
文本预览下载声明
PAGE PAGE 11 绍兴一中期中测试试题卷高二数学(理) 一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.直线的倾斜角是 A. B. C. D. 2.在空间直角坐标系中,点M(-3,1,5),关于x轴对称的点的坐标是 A.(-3,-1,-5) B.(-3,1,-5) C. (3,1,-5) D.(3,-1,-5) 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是 A.x-2y-1=0 B.x-2y+1=0 C. 4.在平面直角坐标系内,若曲线:上所有的点均在第二象限内,则实数的取值范围为 A. B. C. D. 5.已知=(1,5,-2),=(3,1,z),若⊥,=(x-1,y,-3),且BP⊥平面ABC,则实数x、y、z分别为 A.eq \f(33,7),-eq \f(15,7),4    B.eq \f(40,7),-eq \f(15,7),4 C.eq \f(40,7),-2,4 D.4,eq \f(40,7),-15 6.设、是两条不同直线,、是两个不同平面,则下列命题错误的是 A.若,,则 B.若,,,则 C.若,,,则 D.若,,则 7.在正方体中,是的中点,则异面直线与所成角的大小是 A. B. C. D. 8.若圆C:x2+y2+2x-4y+3=0关于直线2ax+by+6=0对称,则由点(a,b)向圆C所作的切线长的最小值是 A.2 B. 3 C.4 D. 9.正方体的棱长为1,线段B1D1上有两个动点E,F,且, 则下列结论中错误的是 A. B.三棱锥A—BEF的体积为定值 C.二面角A-EF-B的大小为定值 D.异面直线AE,BF所成角为定值 10.已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么的最小值为 A.-4+eq \r(2) B.-3+eq \r(2) C.-4+2eq \r(2) D.-3+2eq \r(2) 二、填空题 (本大题共6小题,每小题3分,共18分) (第13题)11.原点到直线的距离 ▲ . (第13题) 12.在平行六面体中,以顶点A为端点的三条棱长都为1,且它们彼此的夹角都是60°,则对角线AC1的长是 ▲ . 13.一个几何体的三视图及其尺寸如右图所示,其中正(主)视图是直角三角形,侧(左)视图是半圆,俯视图是等腰三角形,则这个几何体的表面积是 ▲ cm2. 14.已知圆C过直线2 x + y +4=0 和圆x2+y2+2 x-4 y +1=0的交点,且原点在圆C上.则圆C的方程为 ▲ . 15.若圆上有且仅有两个点到直线4x-3y-2=0的距离为1,则半径r的取值范围是 ▲ .   16.将一个水平放置的正方形绕直线向上转动到,再将所得正方形绕直线向上转动到,则平面与平面所成二面角的正弦值等于____▲ ___. 三、解答题 (本大题共5小题,共52分.解答应写出文字说明、证明过程或演算过程) 17.(本小题满分8分) 光线从A(-3,4)点射出,到x轴上的B点后,被x轴反射,这时反射光线恰好过点C(1,6),求BC所在直线的方程及点B的坐标. 18. (本小题满分12分) 如图,已知四棱锥中,底面是直角梯形,,,,,平面,. ABCDPM(Ⅰ) A B C D P M (Ⅱ)求证:平面; (Ⅲ)若M是PC的中点,求三棱锥M—ACD的体积. 19. (本小题满分10分) 已知点和圆O:. (Ⅰ)过点E的直线被圆O所截得的弦长为,求直线 的方程; (Ⅱ)试探究是否存在这样的点M:M是圆O内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEM的面积?若存在,求出点M的坐标,若不存在,说明理由. 20.(本小题满分10分) 如图,已知三角形与所在平面互相垂直,且,,,点,分别在线段上,沿直线将向上翻折,使与重合. (Ⅰ)求证:; (Ⅱ)求直线与平面所成角的正弦值. 21.(本小题满分12分) 如图,圆C:. (Ⅰ)若圆C与轴相切,求圆C的方程; (Ⅱ)已知,圆C与轴相交于两点M,N(点M
显示全部
相似文档