文档详情

用空间向量研究直线、平面的位置关系(1)课件-人教A版高中数学选择性必修第一册.pptx

发布:2024-03-10约4.57千字共41页下载文档
文本预览下载声明

人教A版选择性必修第一册1.4.1用空间向量研究直线、平面的位置关系(1)第一章空间向量与立体几何

学习目标1.能用向量语言描述直线和平面,理解直线的方向向量与平面的法向量2.能用向量语言表述直线与直线、直线与平面、平面与平面的平行关系.3.能用向量方法证明必修内容中有关直线、平面平行关系的判定定理.4.能用向量方法证明空间中直线、平面的平行关系.

牌楼与牌坊类似,是中国传统建筑之一,最早见于周朝。在园林、寺观、宫苑、陵墓和街道常有建造.旧时牌楼主要有木、石、木石、砖木、琉璃几种,多设于要道口。牌楼中有一种有柱门形构筑物,一般较高大。如图,牌楼的柱子与地面是垂直的,如果牌楼上部的下边线与柱子垂直,我们就能知道下边线与地面平行。这是为什么呢?情境导学

一、空间中点、直线和平面的向量表示1.点的位置向量探究新知

①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.

1.下列说法中正确的是()A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B解析:由平面法向量的定义可知,B项正确.小试牛刀

3.空间平面的向量表示式探究新知

4.平面的法向量如图,直线l⊥α,取直线l的方向向量a,我们称向量a为平面α的法向量.给定一个点A和一个向量a,那么过点A,且以向量a为法向量的平面完全确定,可以表示为集合点睛:空间中,一个向量成为直线l的方向向量,必须具备以下两个条件:①是非零向量;②向量所在的直线与l平行或重合.

2.若直线l过点A(-1,3,4),B(1,2,1),则直线l的一个方向向量可以是()答案:D小试牛刀A.(-1,2,-1) B.(1,2,1)C.(1,2,-1) D.(-1,2,1)答案:A令x=-1,则y=2,z=-1.即平面ABC的一个法向量为n=(-1,2,-1).

二、空间中直线、平面平行的向量表示点睛:1.空间平行关系的本质是线线平行,根据共线向量定理,只需证明直线的方向向量μ1∥μ2.此外,证明线面平行也可用共面向量定理,即只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可.2.利用直线的方向向量证明直线与直线平行、直线与平面平行时,要注意向量所在的直线与所证直线或平面无公共点,证明平面与平面平行时也要注意两平面没有公共点.探究新知

4.若两条直线的方向向量分别是a=(2,4,-5),b=(-6,x,y),且两条直线平行,则x=,y=.?答案:-12;15答案:平行解析:因为u·n=(-1,2,-3)·(4,-1,-2)=0,所以u⊥n.所以直线与平面平行,即l∥β.小试牛刀5.若平面β外的一条直线l的方向向量是u=(-1,2,-3),平面β的法向量为n=(4,-1,-2),则l与β的位置关系是.?

例1.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=1,E是PC的中点,求平面EDB的一个法向量.思路分析首先建立空间直角坐标系,然后利用待定系数法按照平面法向量的求解步骤进行求解.典例解析

解:如图所示建立空间直角坐标系.依题意可得D(0,0,0),P(0,0,1),延伸探究:本例条件不变,你能分别求出平面PAD与平面PCD的一个法向量吗?它们之间的关系如何?解:如同例题建系方法,易知平面PAD的一个法向量为n1=(0,1,0),平面PCD的一个法向量为n2=(1,0,0),因为n1·n2=0,所以n1⊥n2.

利用待定系数法求平面法向量的步骤(1)设平面的法向量为n=(x,y,z).(2)找出(求出)平面内的两个不共线的向量的坐标a=(a1,b1,c1),b=(a2,b2,c2).(4)解方程组,取其中的一个解,即得法向量.归纳总结

1.如图所示,已知四边形ABCD是直角梯形,AD∥BC,∠ABC=90°,SA⊥平面ABCD,SA=AB=BC=1,,试建立适当的坐标系.(1)求平面ABCD的一个法向量;(2)求平面SAB的一个法向量;(3)求平面SCD的一个法向量.跟踪训练

解:以点A为原点,AD、AB、AS所在的直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,

例2.在长方体ABCD-A1B1C1D1中,

显示全部
相似文档