《多传感器信息融合技术综述(论文)》.doc
文本预览下载声明
多传感器信息融合技术综述
内容摘要:多传感器信息融合技术是一门新兴学科,它的理论和方法已被应用到许多研究领域。本文主要对多传感器信息融合的模型与结构、信息融合的主要技术和方法、信息融合理论体系以及信息融合技术的应用等内容进行了概要介绍和展开了综述。
关键词:多传感器;信息融合;综述
随着传感器技术、数据处理技术、计算机技术、网络通讯技术、人工智能技术和并行计算的软硬件技术等相关技术的发展,多传感器信息融合技术已受到了广泛关注。多传感器信息融合是20世纪80年代出现的一门新兴学科,它首先广泛地应用于军事领域,如海上监视、空-空和地-空防御、战场情报、监视和获取目标及战略预警等,随着科学技术的进步,多传感器信息融合至今已形成和发展成为一门信息综合处理的专门技术,并很快推广应用到工业机器人、智能检测、自动控制、交通管理和医疗诊断等多种领域。我国从20世纪90年代也开始了多传感器信息融合技术的研究和开发工作,并在工程上开展了多传感器识别、定位等同类信息融合的应用系统的开发,现在多传感器信息融合技术越来越受到人们的普遍关注。
1多传感器信息融合的概念
multi-sensor fusion)、“数据融合”(data fusion)和“信息融合”(information fusion)。实际上它们是有差别的,现在普遍的看法是,多传感器融合包含的内容比较具体和狭窄,至于信息融合和数据融合,有一些学者认为数据融合包含了信息融合,还有一些学者认为信息融合包含了数据融合,而更多的学者把信息融合与数据融合的当作同一概念看待,在不影响应用的前提下,二种提法都是可以的。因此本文统一使用信息融合这一提法。信息融合有多种定义方式,作者认为比较确切的概念为:充分利用不同时间与空间的多传感器信息资源,采用计算机技术对按时序获得的多传感器观测信息在一定准则下加以自动分析、综合、支配和使用,获得对被测对象的一致性解释与描述,以完成所需的决策和估计任务,使系统获得比它的各组成部分更优越的性能。
2 信息融合的模型和结构
2.1 信息融合的模型
信息融合绝大部分的研究都是根据具体问题及其特定对象建立自己的融合层次,针对其在军事上的应用将信息融合划分为检测层、位置层、属性层、态势评估和威胁估计;根据输入输出数据的特征提出了基于输入/输出特征的融合层次化描述等。可见,信息融合层次的划分没有统一标准,根据信息表征的层次,我们将信息融合划分为像素层、特征层和决策层,分别称为像素级融合、特征级融合和决策级融合[1]。一个给定的信息融合系统,可能涉及多个级别数据的输入。
(1)像素级融合见图1,这是最低层次的信息融合。在这种方法中,匹配的传感器数据直接融合,而后对融合的数据进行特征提取和特征说明。传感器的信息融合之后,没有单个处理的信息损失,识别的处理等价于对单个传感器的处理。该层次的信息融合能够提供其它层次上的融合所不具备的细节信息,因此,像素级多传感器处理提供一种最优决策和识别性能。但是,像素级融合要求精确的传感器配准和宽的传输带宽。
(2)特征级融合见图2,这是中间层次的信息融合。在这种方法中,每个传感器观测目标,并对各传感器的观测进行特征提取(如提取形状、边沿、方位信息等),产生特征矢量,而后融合这些特征矢量,并做出基于联合特征矢量的属性说明。在特征级融合中,各个源提供的特征矢量融合到一个综合的特征矢量中,这种融合是比较简单的,该层次的信息融合是像素级融合和更高一级决策级融合的折衷形式,兼容了两者的优缺点,具有较大的灵活性,在许多情况下是很实用的。(3)决策级融合见图3,这是最高层次的信息融合。在这种方法中,每个传感器观测目标,并对各传感器的观测进行特征提取,产生特征矢量;而后对特征矢量进行模式识别处理, 完成各传感器关于目标的说明;再将各传感器关于目标的说明数据按同一目标进行分级,即关联;最后利用融合算法将某一目标各传感器的数据进行合成,得到该目标的一致性解释与描述。总之,上述3个层次的信息融合都各有其特点,在具体的应用中应根据融合的目的和条件选用,表1对它们的特点进行了综合比较。
表1 3种融合层次的特点比较
融合层次 信息丢失 实时性 精度 容错性 抗干扰力 计算量 融合水平 像素级 小 差 高 差 差 大 低 特征级 中 中 中 中 中 中 中 决策级 大 好 低 优 优 小 高 2.2 通用体系结构
在信息融合处理过程中,根据对原始数据处理方法的不同,信息融合系统的体系结构主要有三种:集中式、分布式和混合式。
(1)集中式:集中式将各传感器获得的原始数据直接送至中央处理器进行融合处理,可以实现实时融合,其数据处理的精度高,算法灵活,缺点是对处理器要求高,可靠性较低,数据量大,故难于实现。
(2)分布式:每个传感器对获得的原始数据先进行局部处理
显示全部