文档详情

1坐标系伸缩变换.doc

发布:2016-07-02约1.54千字共4页下载文档
文本预览下载声明
高二数学导学案 主备人: 备课时间: 组长签字 : §1.1平面直角坐标系与伸缩变换 一、三维目标 1、知识与技能:回顾在平面直角坐标系中刻画点的位置的方法 2、能力与与方法:体会坐标系的作用 3、情感态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 二、学习重点难点 1、教学重点:体会直角坐标系的作用 2、教学难点:能够建立适当的直角坐标系,解决数学问题 三、学法指导:自主、合作、探究 四、知识链接 问题1:如何刻画一个几何图形的位置? 问题2:如何研究曲线与方程间的关系? 五、学习过程 一.平面直角坐标系的建立 某信息中心接到位于正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到一声巨响,正东观测点听到巨响的时间比它们晚了4s。已知各观测点到中心的距离是1020m,试确定巨响发生的位置(假定声音传播的速度是340m/s,各观测点均在同一平面上) 问题1: 思考1:问题1:用什么方法描述发生的位置? 思考2:怎样建立直角坐标系才有利于我们解决问题? 问题2:还可以怎样描述点P的位置? B例1.已知△ABC的三边a,b,c满足b2+c2=5a2,BE,CF分别为边AC,CF上的中线,建立适当的平面直角坐标系探究BE与CF的位置关系。 探究:你能建立不同的直角坐标系解决这个问题吗?比较不同的直角坐标系下解决问题的过程,建立直角坐标系应注意什么问题? 小结:选择适当坐标系的一些规则: 如果图形有对称中心,可以选对称中心为坐标原点 如果图形有对称轴,可以选对称轴为坐标轴 使图形上的特殊点尽可能多地在坐标轴上 二.平面直角坐标系中的伸缩变换 思考1:怎样由正弦曲线y=sinx得到曲线y=sin2x? 坐标压缩变换: 设P(x,y)是平面直角坐标系中任意一点,保持纵坐标不变,将横坐标x缩为原来 1/2,得到点P’(x’,y’).坐标对应关系为: 通常把上式叫做平面直角坐标系中的一个压缩变换。 思考2:怎样由正弦曲线y=sinx得到曲线y=3sinx?写出其坐标变换。 设P(x,y)是平面直角坐标系中任意一点,保持横坐标x不变,将纵坐标y伸长为原来 3倍,得到点P’(x’,y’).坐标对应关系为: 通常把上式叫做平面直角坐标系中的一个伸长变换。 思考3:怎样由正弦曲线y=sinx得到曲线y=3sin2x? 写出其坐标变换。 定义:设P(x,y)是平面直角坐标系中任意一点,在变换的作用下,点P(x,y)对应P’(x’,y’).称为平面直角坐标系中的伸缩变换。 六、达标检测 A1.求下列点经过伸缩变换后的点的坐标: (1) (1,2); (2) (-2,-1) A2.点经过伸缩变换后的点的坐标是(-2,6),则 , ; A3.将点(2,3)变成点(3,2)的伸缩变换是( ) A. B. C. D. A4.将直线变成直线的伸缩变换是 . B5.为了得到函数的图像,只需将函数的图像上所有的点( ) A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍(纵坐标不变) B.向右平移个单位长度,再把所得各点的横坐标缩短到原来的倍(纵坐标不变) C.向左平移个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) D.向右平移个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) B6.在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换后的图形: (1); (2). B8.教材P8 习题1.1 第4,5,6 七、学习小结 八、课后反思 4
显示全部
相似文档