高三三轮——参数方程.docx
文本预览下载声明
高三三轮——坐标系与参数方程一、知识复习(一)坐标系:1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换φ:的作用下,点P(x,y)对应到点P′(x′,y′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念(1)极坐标系如图所示,在平面内取一个定点O,叫做极点;自极点O引一条射线Ox,叫做极轴;再选定一个长度单位、一个角度单位 (通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标①极径:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为ρ.②极角:以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为θ.③极坐标:有序数对(ρ,θ)叫做点M的极坐标,记作M(ρ,θ).3.极坐标与直角坐标的互化设M是平面内任意一点,它的直角坐标是(x,y),极坐标是(ρ,θ),则它们之间的关系为:4.常见曲线的极坐标方程圆心在极点,半径为r的圆的极坐标方程ρ=r(0≤θ2π)圆心为,半径为r的圆的极坐标方程ρ=2rsin θ(0≤θπ)过极点,倾斜角为α的直线的极坐标方程θ=α(ρ∈R)或θ=π+α(ρ∈R)过点(a,0),与极轴垂直的直线的极坐标方程ρcos θ=a过点,与极轴平行的直线的极坐标方程ρsin θ=a(0θπ)(二)参数方程:1.参数方程的概念:一般地,在平面直角坐标系中,如果曲线C上任意一点P的坐标x,y是某个变数t的函数:并且对于t的每一个允许值,由函数式所确定的点P(x,y)都在曲线C上,那么方程叫做这条曲线的参数方程,那么方程叫做这条曲线的参数方程,变数t叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.直线、圆、椭圆的参数方程(多用于解决解析几何中的三角换元法)(1)过点M(x0,y0),倾斜角为α的直线l的参数方程为(t为参数)(2)圆心在点M0(x0,y0),半径为r的圆的参数方程为(θ为参数)(3)椭圆+=1(a>b>0)的参数方程为(φ为参数)二、高考真题1、(2007宁夏卷22)选修4-4:坐标系与参数方程和的极坐标方程分别为.(Ⅰ)把和的极坐标方程化为直角坐标方程;(Ⅱ)求经过,交点的直线的直角坐标方程.2.(2008宁夏卷22)选修4-4:坐标系与参数方程已知曲线C1:,曲线C2:。(1)指出C1,C2各是什么曲线,并说明C1与C2公共点的个数;(2)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线,。写出,的参数方程。与公共点的个数和C1与C2公共点的个数是否相同?说明你的理由。3.(2009宁夏卷23)选修2—4:坐标系与参数方程.已知曲线C1: (t为参数), C2:(为参数).(Ⅰ)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C1上的点P对应的参数为,Q为C2上的动点,求PQ中点M到直线(t为参数)距离的最小值.4.(2010新课标全国卷23)选修4-4:坐标系与参数方程已知直线C1:(t为参数),圆C2:(θ为参数).(1)当α=时,求C1与C2的交点坐标;(2)过坐标原点O作C1的垂线,垂足为A,P为OA的中点.当α变化时,求P点轨迹的参数方程,并指出它是什么曲线.5.(2011新课标全国卷23)选修4-4:坐标系与参数方程在直角坐标系xOy中,曲线的参数方程为为参数),M为上的动点,P点满足,点P的轨迹为曲线.(I)求的方程;(II)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为A,与的异于极点的交点为B,求|AB|6.(2010福建卷21(2))在直角坐标系xOy中,直线L的参数方程为(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为=2sin。(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设圆C与直线L交于点A,B。若点P的坐标为(3,),求∣PA∣+∣PB∣。7.(2010辽宁卷23)选修4-4:坐标系与参数方程已知P为半圆C:上的点,点A的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与C的弧的长度均为。(I)以O为极点,轴的正半轴为极轴建立极坐标系,求点M的极坐标;(II)求直线AM的参数方程.8.(2013辽宁,理23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.圆C1,直线C2的极坐标方程分别为ρ=4sin θ,.(1)求C1与C2交点的极坐标;(2)设P为C1的圆心,Q为C1与C2交点连线的中点.已知直线PQ的参数方程为 (t∈R为参数),求a,b的值.9.(2012全国卷23)本小题满分10分)选修4—4;坐标系与参数方程已知曲线的参数
显示全部