文档详情

二次函数及面积之铅垂高.doc

发布:2018-10-21约4.44千字共10页下载文档
文本预览下载声明
WORD文档下载可编辑 专业技术资料分享 二次函数与面积之铅垂高 一教学目的 1.让学生经历探索的过程,观察图形在动点的运动过程中观察图形的变化情况,促进培养学生解决问题的能力. 2.理解用“鉛锤高,水平宽”求不规则三角形面积的方法,并用此方法解决二次函数与几何图形的综合题中有关三角形面积计算的问题。 二重点难点 1灵活应用铅垂高进行二次函数与几何图形的综合题中有关三角形面积计算的问题。 2铅垂高的寻找方法,以及用坐标表示线段 三.教学方法 先让学生阅读理解,自主探究,引导学生掌握方法,讲练结合 四.教学过程 BC铅垂高水平宽 B C 铅垂高 水平宽 h a 图12-1 A2 如图12-1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:,即三角形面积等于水平宽与铅垂高乘积的一半. 解答下列问题: 如图12-2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B. (1)求抛物线和直线AB的解析式; (2)点P是抛物线(在第一象限内)上的一个动点,连结PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及; 图12-2xCOyABD11(3)是否存在一点P,使S△PA 图12-2 x C O y A B D 1 1 例1解:(1)设抛物线的解析式为: 1分 把A(3,0)代入解析式求得 所以 3分 设直线AB的解析式为: 由求得B点的坐标为 4分 把,代入中 解得: 所以 6分 (2)因为C点坐标为(1,4) 所以当x=1时,y1=4,y2=2 所以CD=4-2=2 8分 (平方单位) 10分 (3)假设存在符合条件的点P,设P点的横坐标为x,△PAB的铅垂高为h, 则 12分 由S△PAB=S△CAB 得: 化简得: 解得, 将代入中, 解得P点坐标为 14分 总结:求不规则三角形面积时不妨利用铅垂高。铅垂高的表示方法是解决问题的关键,要学会用坐标表示线段。 例2(2010广东省中考拟)如图10,在平面直角坐标系中,二次函数的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),OB=OC ,tan∠ACO=. (1)求这个二次函数的表达式. (2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由. (3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度. _y_x_O_E_D_C_B_A图10_G_A_ _ y _ x _ O _ E _ D _ C _ B _ A 图10 _ G _ A _ B _ C _ D _ O _ x _ y 图11 1)方法一:由已知得:C(0,-3),A(-1,0) 将A、B、C三点的坐标代入得 解得: 所以这个二次函数的表达式为: 方法二:由已知得:C(0,-3),A(-1,0) 设该表达式为: 将C点的坐标代入得: 所以这个二次函数的表达式为: (注:表达式的最终结果用三种形式中的任一种都不扣分) (2)方法一:存在,F点的坐标为(2,-3) 理由:易得D(1,-4),所以直线CD的解析式为: ∴E点的坐标为(-3,0) 由A、C、E、F四点的坐标得:AE=CF=2,AE∥CF ∴以A、C、E、F为顶点的四边形为平行四边形 ∴存在点F,坐标为(2,-3) 方法二:易得D(1,-4),所以直线CD的解析式为: ∴E点的坐标为(-3,0) ∵以A、C、E、F为顶点的四边形为平行四边形 ∴
显示全部
相似文档