S^n+1中具有调和Mobius曲率张量的超曲面.pdf
文本预览下载声明
维普资讯
第37卷第1期 数 学 进 展 、 1.37.No.1
2oos~2月 ADVANCESIN M ATHEM ATICS Feb.,2008
HypersurfacesW ith
H armonicM 6biusCurvaturein 叶l
LITongzhu , SUN Huafei
(DepartmentofMathematicsBeoingInstituteofTechnology,Bering,100871P.R.China)
Abstract:Letz:』n._÷Sn+ beahypersurfaceinthefn+11.dimensionalunitsphere
S withoutumbilics.TWObasisinvariantsofzundertheM6biustransformationgroupof
S atetheM5biusmetricgandtheM5biussecondfundamentalform B.whichdetermine
thehypersurface up to aM5biustransformation ifn 3
. Inaddition,theMSbiusform
iSaimportantinvariant.Theassumption 西 :0iSnecessary insomeclassificationtheorems
Inthispaper,weconsiderthen1dimensionalhypersurfacesfn 31withvanishingM5bius
form 西.w eclassifythehypersurfaceswithharmonicM5biuscurvaturetensor
. Moreover.we
classifyallEinsteinhypersurfacesand allhypersurfacesofconstantsectionalcurvaturewith
respecttoM6biusmetric.
Keywords:M5biusgeometry;harmonicM5biUScurvaturetensor;Einsteinmna ifold
MRf2000)SubjectClassification:53A03/CLCnumber:0186
Documentcode:A ArticleID: 1000.0917(2008)01.0057-10
0Introduction
Let :Mn__+Sn+beahypersurfaceinthe(几+1).dimensionalunitsphereSn+without
umbilics.Let{et)bealocalorthonormalbasisforthefirstfundamentalofrmI=dx.dxwith
dualbasis )-LetII=∑巧hij8i8jbethesecondfundamentalofrmof andH=元1∑thii
themeancurvatureof .Wedefine
P2 n ( j一n日)
,
whereJJ_Jjisthenormwithrespecttotheinducedmetricdx·dxo
显示全部