文档详情

指数函数及其性质].doc

发布:2017-03-13约2.46千字共5页下载文档
文本预览下载声明
2.1.2指数函数及其性质 知识与技能:理解指数函数的概念,掌握指数函数的图象和性质,能应用所学知识解决简单的数学问题。 过程与方法:通过类比,回顾归纳从图像和解析式这两种不同角度研究函数性质的数学方法。领会数形结合的数学思想方法,培养学生发现、分析、解决问题的能力。 情感态度与价值观:在指数函数的学习过程中,感受数学思想之美,培养学生主动学习,合作交流的意识。 二、教学重点、难点: 教学重点:指数函数的概念、图象和性质。 教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。 三、学情分析: 指数函数是在学生系统学习了函数概念,基本掌握了函数性质的基础上进行研究的,是学生对函数概念及性质的第一次应用。学生的认知水平从形象向抽象、从特殊向一般过渡,思维能力的提高是一个转折期,但是,学生的自主意识强,有主动学习的愿望与能力。有好奇心、好胜心、进取心,富有激情、思维活跃。 四、教学内容分析 本节课是《普通高中课程标准实验教科书·数学(1)》(人教A版)第二章第一节第二课(2.1.2)《指数函数及其性质》。根据实际情况,我将《指数函数及其性质》划分为两节课(探究图象及其性质,指数函数及其性质的应用),这是第一节课“探究图象及其性质”。 指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。 五、教学过程: (一)创设情景 问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂 x次后,得到的细胞分裂的个数 y与 x之间,构成一个函数关系,能写出 x与 y之间的函数关系式吗? 学生回答: y与 x之间的关系式,可以表示为y=2x?。 2: 一种放射性物质不断衰变为其他物质,每经过一年剩留的质量约是原来的84%.求出这种物质的剩留量随时间(单位:年)变化的函数关系.设最初的质量为1,时间变量用x表示,剩留量用y表示。 学生回答: y与 x之间的关系式,可以表示为y=0.84x?。?????????? (二)导入新课 引导学生观察,两个函数中,底数是常数,指数是自变量。 设计意图:充实实例,突出底数a的取值范围,让学生体会到数学来源于生产生活实际。函数y=2x、y=0.84x 分别以0a1或a1的数为底,加深对定义的感性认识,为顺利引出指数函数定义作铺垫。 (三)新课讲授 ??? 1.指数函数的定义 一般地,函数叫做指数函数,其中x是自变量,函数的定义域是R。 的含义: 设计意图:为按两种情况得出指数函数性质作铺垫。若学生回答不合适,引导学生用区间表示:(0,1)∪(1,+∞) 问题:指数函数定义中,为什么规定“”如果不这样规定会出现什么情况? 设计意图:教师首先提出问题:为什么要规定底数大于0且不等于1呢?这是本节的一个难点,为突破难点,采取学生自由讨论的形式,达到互相启发,补充,活跃气氛,激发兴趣的目的。 对于底数的分类,可将问题分解为: (1)若a0会有什么问题?(如,则在实数范围内相应的函数值不存在) (2)若a=0会有什么问题?(对于 ,都无意义) (3)若 a=1又会怎么样?(1x无论x取何值,它总是1,对它没有研究的必要.) 师:为了避免上述各种情况的发生,所以规定a0且 . 在这里要注意生生之间、师生之间的对话。 设计意图:认识清楚底数a的特殊规定,才能深刻理解指数函数的定义域是R;并为学习对数函数,认识指数与对数函数关系打基础。 教师还要提醒学生指数函数的定义是形式定义,必须在形式上一模一样才行,然后把问题引向深入。 1:若函数是指数函数,则a=------ 2:已知y=f(x)是指数函数,且f(2)=4,求函数y=f(x)的解析式。 设计意图 :加深学生对指数函数定义和呈现形式的理解。 2.指数函数的图像及性质 在同一平面直角坐标系内画出下列指数函数的图象 画函数图象的步骤:列表、描点、连线 思考如何列表取值? 教师与学生共同作出 图像。 设计意图:在理解指数函数定义的基础上掌握指数函数的图像与性质,是本节的重点。关键在于弄清底数a对于函数值变化的影响。对于时函数值变化的不同情况,学生往往容易混淆,这是教学中的一个难点。为此,必须利用图像,数形结合。教师亲自板演,学生亲自在课前准备好的坐标系里画图,而不是采用几何画板直接得到图像,目的是使学生更加信服,加深印象,并为以后画图解题,采用数形结合思想方法打下基础。 教师组织学生结合图像讨论指数函数的性质。 设计意图:这是本节课的重点和难点,要充分调动学生的积极性、主动性,发挥他们的潜能,尽量由学生自主得出性质,以便能够更深刻的记忆、更熟练的运用。 师生共同总结指数函数的性质,教师边总结边板书。 ? 特别地,函数值的分布情况如下:
显示全部
相似文档