热力学统计物理_第四版_汪志诚_答案 2.doc
文本预览下载声明
第一章 热力学的基本规律
1.1 试求理想气体的体胀系数,压强系数和等温压缩系数。
解:已知理想气体的物态方程为
(1)
由此易得
(2)
(3)
(4)
1.2 证明任何一种具有两个独立参量的物质,其物态方程可由实验测得的体胀系数及等温压缩系数,根据下述积分求得:如果,试求物态方程。
解:以为自变量,物质的物态方程为
其全微分为
(1)
全式除以,有
根据体胀系数和等温压缩系数的定义,可将上式改写为 (2)
上式是以为自变量的完整微分,沿一任意的积分路线积分,有 (3)
若,式(3)可表为 (4)
选择图示的积分路线,从积分到,再积分到(),相应地体
积由最终变到,有即(常量),或 (5)
式(5)就是由所给求得的物态方程。 确定常量C需要进一步的实验数据。
1.3 在和1下,测得一铜块的体胀系数和等温压缩系数分别为可近似看作常量,今使铜块加热至。问:
(a)压强要增加多少才能使铜块的体积维持不变?(b)若压强增加100,铜块的体积改变多少?
解:(a)根据1.2题式(2),有 (1)
上式给出,在邻近的两个平衡态,系统的体积差,温度差和压强差之间的关系。如果系统的体积不变,与的关系为 (2)
在和可以看作常量的情形下,将式(2)积分可得 (3)
将所给数据代入,可得
因此,将铜块由加热到,要使铜块体积保持不变,压强要增强
(b)1.2题式(4)可改写为 (4)
将所给数据代入,有
因此,将铜块由加热至,压强由增加,铜块体积将增加原体积的倍。
1.4 简单固体和液体的体胀系数和等温压缩系数数值都很小,在一定温度范围内可以把和看作常量. 试证明简单固体和液体的物态方程可近似为
解: 以为状态参量,物质的物态方程为
根据习题1.2式(2),有 (1)
将上式沿习题1.2图所示的路线求线积分,在和可以看作常量的情形下,有
(2)
或 (3)
考虑到和的数值很小,将指数函数展开,准确到和的线性项,有
(4)
如果取,即有 (5)
1.14试根据热力学第二定律证明两条绝热线不能相交。
解:假设在图中两条绝热线交于点,如图所示。设想一等温线与两条绝热线分别交于点和点(因为等温线的斜率小于绝热线的斜率,这样的等温线总是存在的),则在循环过程中,系统在等温过程中从外界吸取热量,而在循环过程中对外做功,其数值等于三条线所围面积(正值)。循环过程完成后,系统回到原来的状态。根据热力学第一定律,有。这样一来,系统在上述循环过程中就从单一热源吸热并将之完全转变为功了,
这违背了热力学第二定律的开尔文说法,是不可能的。 因此两条绝热线不可能相交。
1.17 温度为的1kg水与温度为的恒温热源接触后,水温达到。试分别求水和热源的熵变以及整个系统的总熵变。欲使参与过程的整个系统的熵保持不变,应如何使水温从升至?已知水的比热容为
解:的水与温度为的恒温热源接触后水温升为,这一过程是不可逆过程。为求水、热源和整个系统的熵变,可以设想一个可逆过程,它使水和热源分别产生原来不可逆过程中的同样变化,通过设想的可逆过程来求不可逆过程前后的熵变。
为求水的熵变,设想有一系列彼此温差为无穷小的热源,其温度分布在与之间。令水依次从这些热源吸热,使水温由升至。在这可逆过程中,水的熵变为
(1)
水从升温至所吸收的总热量为
为求热源的熵变,可令热源向温度为的另一热源放出热量。在这可逆过程中,热源的熵变为
(2)
由于热源的变化相同,式(2)给出的熵变也就是原来的不可逆过程中热源的熵变。则整个系统的总熵变为
(3)
为使水温从升至而参与过程的整个系统的熵保持不变,应令水与温度分布在与之间的一系列热源吸热。水的熵变仍由式(1)给出。这一系列热源的熵变之和为
(4)
参与过程的整个系统的总熵变为
(5)
1.18 10A的电流通过一个的电阻器,历时1s。
(a)若电阻器保持为室温,试求电阻器的熵增加值。
(b)若电阻器被一绝热壳包装起来,其初温为,电阻器的质量为10g,比热容为 问电阻器的熵增加值为多少?
解:(a)以为电阻器的状态参量。设想过程是在大气压
显示全部