函数值域求法的应用.doc
文本预览下载声明
函数值域求法的应用
宣汉县第二中学 杜林
对于函数的三要素之定义域和值域这两大要素,我们要有解决它们的办法。在上一篇文章中,我们已经学习了函数定义域的求法;下面我们来学习求函数值域的几种常见方法
1.直接法:先掌握常见函数的值域情况,然后通过常见函数的复合来求解值域。
一次函数y=ax+b(a0)的定义域为R,值域为R;
反比例函数的定义域为{x|x0},值域为{y|y0};
二次函数的定义域为R,
当a0时,值域为{};当a0时,值域为{}.
例1.求下列函数的值域
① y=3x+2(-1x1) ②
③ ④
解:①∵-1x1,∴-33x3,
∴-13x+25,即-1y5,∴值域是[-1,5]
②∵ ∴
即函数的值域是 { y| y2}
③
∵ ∴
即函数的值域是 { y| y(R且y(1}(此法亦称分离常数法)
④当x0,∴=,
当x0时,=-
∴值域是[2,+).(此法也称为配方法)
函数的图像为:
2.二次函数各区间上的值域(最值):
例2 求下列函数的最大值、最小值与值域:
①; ②;
③; ④;
解:∵,∴顶点为(2,-3),顶点横坐标为2.
①∵抛物线的开口向上,函数的定义域R,
∴x=2时,ymin=-3 ,无最大值;函数的值域是{y|y-3 }.
②∵顶点横坐标2[3,4],
当x=3时,y= -2;x=4时,y=1;
∴在[3,4]上,=-2,=1;值域为[-2,1].
③∵顶点横坐标2[0,1],当x=0时,y=1;x=1时,y=-2,
∴在[0,1]上,=-2,=1;值域为[-2,1].
④∵顶点横坐标2 [0,5],当x=0时,y=1;x=2时,y=-3, x=5时,y=6,
∴在[0,1]上,=-3,=6;值域为[-3,6].
注:对于二次函数,
⑴若定义域为R时,
①当a0时,则当时,其最小值;
②当a0时,则当时,其最大值.
⑵若定义域为x [a,b],则应首先判定其顶点横坐标x0是否属于区间[a,b].
①若[a,b],则是函数的最小值(a0)时或最大值(a0)的大小决定函数的最大(小)值.
②若[a,b],则[a,b]是在的单调区间内,只需比较的大小即可决定函数的最大(小)值.
注:①若给定区间不是闭区间,则可能得不到最大(小)值;
②当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论.
3.判别式法(△法):
判别式法一般用于分式函数,其分子或分母只能为二次式,解题中要注意二次项系数是否为0的讨论
例3.求函数的值域
方法一:去分母得 (y(1)+(y+5)x(6y(6=0 ①
当 y(1时 ∵x(R ∴△=(y+5)+4(y(1)×6(y+1)0
由此得 (5y+1)0
检验 时 (代入①求根)
∵2 ( 定义域 { x| x(2且 x(3} ∴
再检验 y=1 代入①求得 x=2 ∴y(1
综上所述,函数的值域为 { y| y(1且 y(}
方法二:把已知函数化为函数 (x(2)
由此可得 y(1
∵ x=2时 即
∴函数的值域为 { y| y(1且 y(}
说明:此法是利用方程思想来处理函数问题,一般称判别式法. 判别式法一般用于分式函数,其分子或分母只能为二次式.解题中要注意二次项系数是否为0的讨论.
4.换元法
例4.求函数的值域
解:设 则 t0 x=1(
代入得
∵t0 ∴y4
5.分段函数
例5.求函数y=|x+1|+|x-2|的值域.
解法1:将函数化为分段函数形式:,画出它的图象(下图),由图象可知,函数的值域是{y|y3}.
解法2:∵函数y=|x+1|+|x-2|表示数轴上的动点x到两定点-1,2的距离之和,∴易见y的最小值是3,∴函数的值域是[3,+]. 如图
两法均采用“数形结合”,利用几何性质求解,称为几何法或图象法.
说明:以上是求函数值域常用的一些方法(观察法、配方法、判别式法、图象法、换元法等),随着知识的不断学习和经验的不断积累,还有如不等式法、三角代换法等.有的题可以用多种方法求解,有的题用某种方法求解比较简捷,我们要通过不断实践,熟悉和掌握各种解法,并在解题中尽量采用简捷解法。
显示全部