文档详情

8.3实数及其简单运算第1课时 课件(共25张PPT)人教版数学七年级下册.pptx

发布:2025-02-26约1.05千字共25页下载文档
文本预览下载声明

第1课时实数的概念第八章实数8.3

探究与应用课堂小结与检测

探究与应用?活动1了解无理数和实数的概念,会对实数进行分类

??

(2)整数能写成小数的形式吗?3可以看成3.0吗?由此你可以得到什么结论??(2)整数能写成小数的形式.3可以看成3.0.由此可以得出任何一个有理数都可以写成有限小数或无限循环小数的形式.反过来,任何有限小数或无限循环小数也都是有理数.

(3)所有的数都可以写成有限小数或无限循环小数的形式吗?举例说明.?

?有理数无理数

?会分类?

????

????一个1),

?得锦囊

[问题情境]每个有理数都可以用数轴上的点表示,无理数也可以用数轴上的点表示.如何在数轴上表示无理数?活动2会在数轴上表示无理数,会利用数轴比较实数的大小

[引发思考]1.以单位长度为直径画一个圆,它的周长等于π.如图8-3-1,从原点开始,将这个圆沿数轴向右滚动一周,圆上的一点由原点O到达点O,点O对应的数是多少?图8-3-1解:从题图中可以看出,OO的长是这个圆的周长π,∴点O对应的数是π.

2.(1)如图8-3-2,把两个边长为1的小正方形通过剪拼,得到一个大正方形.由大正方形的面积为2可知其边长为,从而说明边长为1的小正方形的对角线的长为;?图8-3-2??

(2)利用(1)的思路可得:如图8-3-3,以单位长度为边长画一个正方形,以原点为圆心,正方形的对角线长为半径画弧,与正半轴的交点就表示,与负半轴的交点就表示;?图8-3-3??

??

[概括新知]1.当数的范围从有理数扩充到实数后,每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.因此,实数与数轴上的点是对应的.?2.与规定有理数的大小一样,对于数轴上的任意两个点,右边的点表示的实数总比左边的点表示的实数.?一一大

?图8-3-4B

?C

比较实数大小的三种方法记关键计算器法利用计算器算出近似值差值比较法若a-b0,则ab;若a-b=0,则a=b;若a-b0,则ab平方法

[本课时认知逻辑]课堂小结与检测有限小数或无限循环小数正有理数0负有理数有理数无理数正无理数负无理数无限不循环小数实数数与点的对应数轴

?[检测]A

2.下列结论正确的是 ()A.无限小数是无理数B.无限不循环小数是无理数C.有理数就是有限小数D.无理数就是开方开不尽的数B

??

?④⑥⑦⑧①⑤⑥⑧③④②⑦

显示全部
相似文档