重庆市西南大学附属中学2023-2024学年高三第二次模拟考试数学试卷含解析.doc
重庆市西南大学附属中学2023-2024学年高三第二次模拟考试数学试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知某几何体的三视图如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为()
A.2 B.5 C. D.
2.以下两个图表是2019年初的4个月我国四大城市的居民消费价格指数(上一年同月)变化图表,则以下说法错误的是()
(注:图表一每个城市的条形图从左到右依次是1、2、3、4月份;图表二每个月份的条形图从左到右四个城市依次是北京、天津、上海、重庆)
A.3月份四个城市之间的居民消费价格指数与其它月份相比增长幅度较为平均
B.4月份仅有三个城市居民消费价格指数超过102
C.四个月的数据显示北京市的居民消费价格指数增长幅度波动较小
D.仅有天津市从年初开始居民消费价格指数的增长呈上升趋势
3.设直线过点,且与圆:相切于点,那么()
A. B.3 C. D.1
4.设i是虚数单位,若复数()是纯虚数,则m的值为()
A. B. C.1 D.3
5.胡夫金字塔是底面为正方形的锥体,四个侧面都是相同的等腰三角形.研究发现,该金字塔底面周长除以倍的塔高,恰好为祖冲之发现的密率.设胡夫金字塔的高为,假如对胡夫金字塔进行亮化,沿其侧棱和底边布设单条灯带,则需要灯带的总长度约为
A. B.
C. D.
6.已知,,那么是的()
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
7.某人2018年的家庭总收人为元,各种用途占比如图中的折线图,年家庭总收入的各种用途占比统计如图中的条形图,已知年的就医费用比年的就医费用增加了元,则该人年的储畜费用为()
A.元 B.元 C.元 D.元
8.一个超级斐波那契数列是一列具有以下性质的正整数:从第三项起,每一项都等于前面所有项之和(例如:1,3,4,8,16…).则首项为2,某一项为2020的超级斐波那契数列的个数为()
A.3 B.4 C.5 D.6
9.设f(x)是定义在R上的偶函数,且在(0,+∞)单调递减,则()
A. B.
C. D.
10.在中,为边上的中点,且,则()
A. B. C. D.
11.泰山有“五岳之首”“天下第一山”之称,登泰山的路线有四条:红门盘道徒步线路,桃花峪登山线路,天外村汽车登山线路,天烛峰登山线路.甲、乙、丙三人在聊起自己登泰山的线路时,发现三人走的线路均不同,且均没有走天外村汽车登山线路,三人向其他旅友进行如下陈述:
甲:我走红门盘道徒步线路,乙走桃花峪登山线路;
乙:甲走桃花峪登山线路,丙走红门盘道徒步线路;
丙:甲走天烛峰登山线路,乙走红门盘道徒步线路;
事实上,甲、乙、丙三人的陈述都只对一半,根据以上信息,可判断下面说法正确的是()
A.甲走桃花峪登山线路 B.乙走红门盘道徒步线路
C.丙走桃花峪登山线路 D.甲走天烛峰登山线路
12.某四棱锥的三视图如图所示,记S为此棱锥所有棱的长度的集合,则()
A.
B.
C.
D.
二、填空题:本题共4小题,每小题5分,共20分。
13.在正方体中,分别为棱的中点,则直线与直线所成角的正切值为_________.
14.设复数满足,则_________.
15.某种产品的质量指标值服从正态分布,且.某用户购买了件这种产品,则这件产品中质量指标值位于区间之外的产品件数为_________.
16.如图,四面体的一条棱长为,其余棱长均为1,记四面体的体积为,则函数的单调增区间是____;最大值为____.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知抛物线,过点的直线交抛物线于两点,坐标原点为,.
(1)求抛物线的方程;
(2)当以为直径的圆与轴相切时,求直线的方程.
18.(12分)已知曲线的参数方程为(为参数),曲线的参数方程为(为参数).
(1)求和的普通方程;
(2)过坐标原点作直线交曲线于点(异于),交曲线于点,求的最小值.
19.(12分)手工艺是一种生活态度和对传统的坚持,在我国有很多手工艺品制作村落,村民的手工技艺世代相传,有些村落制造出的手工艺品不仅全国闻名,