立体几何专题有答案.doc
文本预览下载声明
—— PAGE 33——
立体几何答案
翰林学校 宗克志
26.【2012高考辽宁理18】(本小题满分12分)
如图,直三棱柱,,
点M,N分别为和的中点。
(Ⅰ)证明:∥平面;
(Ⅱ)若二面角为直二面角,求的值。
【命题意图】本题主要考查线面平行的判定、二面角的计算,考查空间想象能力、运算求解能力,是容易题.
【解析】(1)连结,由已知
三棱柱为直三棱柱,
所以为中点.又因为为中点
所以,又平面
平面,因此 ……6分
(2)以为坐标原点,分别以直线为轴,轴,轴建立直角坐标系,如图所示
设则,
于是,
所以,设是平面的法向量,
由得,可取
设是平面的法向量,
由得,可取
因为为直二面角,所以,解得……12分
【点评】本题以三棱柱为载体主要考查空间中的线面平行的判定,借助空间直角坐标系求平面的法向量的方法,并利用法向量判定平面的垂直关系,考查空间想象能力、推理论证能力、运算求解能力,难度适中。第一小题可以通过线线平行来证明线面平行,也可通过面面平行来证明。
27.【2012高考湖北理19】(本小题满分12分)
如图1,,,过动点A作,垂足D在线段BC上且异于点B,连接AB,沿将△折起,使(如图2所示).
(Ⅰ)当的长为多少时,三棱锥的体积最大;
(Ⅱ)当三棱锥的体积最大时,设点,分别为棱,的中点,试在
棱上确定一点,使得,并求与平面所成角的大小.
D
D
A
B
C
A
C
D
B
图2
图1
M
E
.
·
第19题图
【答案】(Ⅰ)解法1:在如图1所示的△中,设,则.
由,知,△为等腰直角三角形,所以.
由折起前知,折起后(如图2),,,且,
所以平面.又,所以.于是
,
当且仅当,即时,等号成立,
故当,即时, 三棱锥的体积最大.
解法2:
同解法1,得.
令,由,且,解得.
当时,;当时,.
所以当时,取得最大值.
故当时, 三棱锥的体积最大.
(Ⅱ)解法1:以为原点,建立如图a所示的空间直角坐标系.
由(Ⅰ)知,当三棱锥的体积最大时,,.
于是可得,,,,,,
且.
设,则. 因为等价于,即
,故,.
所以当(即是的靠近点的一个四等分点)时,.
设平面的一个法向量为,由 及,
得 可取.
设与平面所成角的大小为,则由,,可得
,即.
C
C
A
D
B
图a
E
M
x
y
z
图b
C
A
D
B
E
F
M
N
图c
B
D
P
C
F
N
E
B
G
M
N
E
H
图d
第19题解答图
N
故与平面所成角的大小为
解法2:由(Ⅰ)知,当三棱锥的体积最大时,,.
如图b,取的中点,连结,,,则∥.
由(Ⅰ)知平面,所以平面.
如图c,延长至P点使得,连,,则四边形为正方形,
所以. 取的中点,连结,又为的中点,则∥,
所以. 因为平面,又面,所以.
又,所以面. 又面,所以.
因为当且仅当,而点F是唯一的,所以点是唯一的.
即当(即是的靠近点的一个四等分点),.
连接,,由计算得,
所以△与△是两个共底边的全等的等腰三角形,
如图d所示,取的中点,连接,,
则平面.在平面中,过点作于,
则平面.故是与平面所成的角.
在△中,易得,所以△是正三角形,
故,即与平面所成角的大小为
31.【2012高考福建理18】如图,在长方体ABCD-A1B1C1D1中AA1=AD=1,E为CD中点.
(Ⅰ)求证:B1E⊥AD1;
(Ⅱ)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的行;若存在,求AP的长;若不存在,说明理由.
(Ⅲ)若二面角A-B1EA1的大小为30°,求AB的长.
【答案】本题主要考查立体几何中直线与直线、直线与平面的位置关系及二面角的概念与求法等基础知识,考查空间想象能力、推理论证能力、基本运算能力,以及函数与方程的思想、数形结合思想、化归与转化思想.
解答:
(Ⅰ)长方体中,
得:面
面
(Ⅱ)取的中点为,中点为,连接
在中,面
此时
(Ⅲ)设,连接,过点作于点,连接
面,
得:是二面角的平面角
在中,
在矩形中,
得:
32.【2012高考北京理16】(本小题共14分)
如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将
显示全部