高考复习文科函数知识点小结.doc
文本预览下载声明
函数知识点
一、映射与函数
1、映射 f:A→B 概念
(1)A中元素必须都有象且唯一;
(2)B 中元素不一定都有原象,但原象不一定唯一。
2、函数 f:A→B 是特殊的映射
(1)、特殊在定义域 A 和值域 B都是非空数集。函数 y=f(x)是“y是x 的 函数”这句话的数学表示,其中 x是自变量,y是自变量 x的函数,f 是表示对应法则,它可以是一个解析式,也可以是表格或图象,
也有只能用文字语言叙述.由此可知函数图像与 x轴至多有一个公共 点,但与 y轴的公共点可能没有,也可能是任意个。(即一个x只能对应一个y,但一个y可以对应多个x。)
(2)、函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决 定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数.
二、函数的单调性
它是一个区间概念,即函数的单调性是针对定义域内的区间而言的。判断方法如下:
1、作差(商)法(定义法)
2、导数法
3、复合函数单调性判别方法(同增异减)
三.函数的奇偶性
⑴偶函数:
设()为偶函数上一点,则()也是图象上一点.
偶函数的判定:两个条件同时满足
①定义域一定要关于轴对称,例如:在上不是偶函数.
②满足,或,若时,.
⑵奇函数:
设()为奇函数上一点,则()也是图象上一点.
奇函数的判定:两个条件同时满足
①定义域一定要关于原点对称,例如:在上不是奇函数.
②满足,或,若时,
※四.函数的变换
①:将函数的图象关于y轴对称得到的新的图像 就是的图像;
②:将函数的图象关于x轴对称得到的新的图像就是的图像;
③:将函数的图象在x轴下方的部分对称到x轴的上方,连同函数的图象在x轴上方的部分得到的新的图像就是的图像;
④:将函数的图象在y轴左侧的部分去掉,函数的图象在y轴右侧的部分对称到y轴的左侧,连同函数的图象在y轴右侧的部分得到的新的图像就是的图像.
函 数 y=f(x) y=f(x+a) a0时,向左平移a个单位;a0时,向右平移|a|个单位. y=f(x)+a a0时,向上平移a个单位;a0时,向下平移|a|个单位. y=f(-x) y=f(-x)与y=f(x)的图象关于y轴对称. y=-f(x) y=-f(x)与y=f(x)的图象关于x轴对称. y=-f(-x) y=-f(-x)与y=f(x)的图象关于原点轴对称. y=f(|x|) y=f(|x|)的图象关于y轴对称,x0时函数即y=f(x),所以x0时的图象与x0时y=f(x)的图象关于y轴对称. y=|f(x)| ∵,∴y=|f(x)|的图象是y=f(x)0与y=f(x)0图象的组合. y= y=与y=f(x)的图象关于直线y=x对称. 注:
(1)若对任意实数x,都有f(a+x)=f(a-x)成立,则x=a是函数f(x)的对称轴;
(2)若对任意实数x,都有f(a+x)=f(b-x)成立,则x=是f(x)的对称轴.
五、指数函数与对数函数的图像和性质
一.指数函数
指数与指数幂的运算
1.根式的概念:一般地,如果,那么叫做的次方根,其中1,且∈*.负数没有偶次方根;0的任何次方根都是0,记作。
当是奇数时,,当是偶数时,
2.分数指数幂
正数的分数指数幂的意义,规定:
0的正分数指数幂等于0,0的负分数指数幂没有意义
3.实数指数幂的运算性质
(1)· ;
(2) ;
(二)指数函数及其性质
1、指数函数的概念:一般地,函数 叫做指数函数,其中x是自变量,函数的定义域为R.
注:指数函数的底数的取值范围,底数不能是负数、零和1.
2、指数函数的图象和性质
a1 0a1 定义域 R 定义域 R 值域y>0 值域y>0 在R上单调递增 在R上单调递减 非奇非偶函数 非奇非偶函数 函数图象都过定点(0,1) 函数图象都过定点(0,1)
注意:利用函数的单调性,结合图象还可以看出:
(1)在[a,b]上,值域是或;
(2)若,则;取遍所有正数当且仅当;
(3)对于指数函数,总有;
二、对数函数
(一)对数
1.对数的概念:一般地,如果,那么 数叫做以为底的对数,记作:(— 底数,—
显示全部