用十字相乘法分解因式.doc
文本预览下载声明
用十字相乘法分解因式
1.型的因式分解
这类式子在许多问题中经常出现,其特点是:
(1) 二次项系数是1;(2) 常数项是两个数之积;(3) 一次项系数是常数项的两个因数之和.
因此,
运用这个公式,可以把某些二次项系数为1的二次三项式分解因式.
【例1】把下列各式因式分解:
(1) (2)
解:(1)
.
(2)
说明:此例可以看出,常数项为正数时,应分解为两个同号因数,它们的符号与一次项系数的符号相同.
【例2】把下列各式因式分解:
(1) (2)
解:(1)
(2)
说明:此例可以看出,常数项为负数时,应分解为两个异号的因数,其中绝对值较大的因数与一次项系数的符号相同.
【例3】把下列各式因式分解:
(1) (2)
分析:(1) 把看成的二次三项式,这时常数项是,一次项系数是,把分解成与的积,而,正好是一次项系数.
(2) 由换元思想,只要把整体看作一个字母,可不必写出,只当作分解二次三项式.
解:(1)
(2)
2.一般二次三项式型的因式分解
大家知道,.
反过来,就得到:
我们发现,二次项系数分解成,常数项分解成,把写成,这里按斜线交叉相乘,再相加,就得到,如果它正好等于的一次项系数,那么就可以分解成,其中位于上一行,位于下一行.
这种借助画十字交叉线分解系数,从而将二次三项式分解因式的方法,叫做十字相乘法.
必须注意,分解因数及十字相乘都有多种可能情况,所以往往要经过多次尝试,才能确定一个二次三项式能否用十字相乘法分解.
【例4】把下列各式因式分解:
(1) (2)
解:(1)
(2)
说明:用十字相乘法分解二次三项式很重要.当二次项系数不是1时较困难,具体分解时,为提高速度,可先对有关常数分解,交叉相乘后,若原常数为负数,用减法”凑”,看是否符合一次项系数,否则用加法”凑”,先”凑”绝对值,然后调整,添加正、负号.
练习1 分解因式:
(1)x2-3x+2; (2)x2+4x-12;
(3); (4).
解:(1)如图1.2-1,将二次项x2分解成图中的两个x的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x,就是x2-3x+2中的一次项,所以,有
x2-3x+2=(x-1)(x-2).
说明:今后在分解与本例类似的二次三项式时,可以直接将图1.2-1中的两个x用1来表示(如图1.2-2所示).
(2)由图1.2-3,得
x2+4x-12=(x-2)(x+6).
(3)由图1.2-4,得
=
(4)=xy+(x-y)-1
=(x-1) (y+1) (如图1.2-5所示).
-ay
-by
x
x
图1-4
-2
6
1
1
图1-3
-1
-2
1
1
图1-2
-1
-2
x
x
图1-1
-1
1
x
y
图1-5
显示全部