基于改进YOLOv7的复杂环境下的葡萄成熟度检测.docx
基于改进YOLOv7的复杂环境下的葡萄成熟度检测
目录
基于改进YOLOv7的复杂环境下的葡萄成熟度检测(1)............3
内容概览................................................3
1.1研究背景...............................................3
1.2研究目的与意义.........................................4
1.3文献综述...............................................5
方法与技术..............................................6
2.1YOLOv7算法简介.........................................7
2.1.1YOLO系列算法概述.....................................8
2.1.2YOLOv7算法特性.......................................9
2.2改进YOLOv7算法.........................................9
2.2.1数据增强策略........................................10
2.2.2特征融合技术........................................11
2.2.3损失函数优化........................................12
2.3实验环境与工具........................................12
数据集构建.............................................13
3.1数据采集与标注........................................14
3.1.1数据来源............................................15
3.1.2标注方法与标准......................................15
3.2数据预处理与划分......................................16
3.2.1预处理步骤..........................................17
3.2.2划分训练集、验证集与测试集..........................18
实验与分析.............................................19
4.1实验设置..............................................19
4.1.1训练参数............................................21
4.1.2评价指标............................................22
4.2实验结果分析..........................................23
4.2.1模型性能评估........................................24
4.2.2不同改进方法的对比分析..............................24
4.3复杂环境下检测效果验证................................25
结论与展望.............................................26
5.1研究结论..............................................27
5.2存在的问题与挑战......................................28
5.3未来研究方向..........................................28
基于改进YOLOv7的复杂环境下的葡萄成熟度检测(2)...........29
一、内容概括..............................................29
二、相关技术与背景介绍....................................29
YOLOv7算法概述............................